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ABSTRACT. We study a family of conservative interacting particle systems with degenerate rates
called noncooperative kinetically constrained lattice gases. We prove for all models in this
family the diffusive scaling of the relaxation time, the positivity of the diffusion coefficient, and
the positivity of the self-diffusion coefficient.

1. Introduction

Kinetically constrained lattice gases are interacting particle systems introduced by physi-
cists in order to better understand glassy materials (see, e.g., [19, 24]). The basic underlying
hypothesis behind these models is that glassy behavior is a dynamic effect, and the role of
interactions is irrelevant. Under this hypothesis, we can explain why glasses are rigid using
the cage effect—even though their microscopic structure is amorphous, glasses at low temper-
atures have a very high density, and molecules are unable to move since they are blocked by
neighboring molecules.

In order to model this effect, we consider the lattice Zd, describing a coarse graining of
the glass. Each site, corresponding to some region in the glass, could be either occupied or
empty, representing dense or dilute zones. We think of the glass as very dense, so the small
parameter q will be the ratio of empty sites.

The dynamics of kinetically constrained lattice gases is conservative—particles could jump
between neighbors, turning an occupied site empty and a neighboring empty site occupied.
However, not all jumps are allowed—in order to imitate the cage effect, when the local
neighborhood of a particle is too dense it is blocked. That is, particles are only able to
move under a certain constraint, satisfied when there are many vacancies nearby. Different
kinetically constraint lattice gases are given by different choices of this constraint, namely,
different interpretations of the neighborhood being “too dense”.

To fix an idea, consider a one dimensional model introduced in [2] (see Example 2.1),
where a particle is allowed jump to an empty neighbor, if it has at least two empty neighbors
before or after the jump (including the site it jumped to/from). Note that if a particle is
allowed to jump, than it is also allowed to jump back immediately after. This is a property we
require for all kinetically constrained models, and it guarantees a noninteracting equilibrium.

It is instructive to compare these models to another family of interacting particle systems,
the nonconservative kinetically constrained models (see, e.g., [10]). In those models, rather
than jumping between sites, particles appear and disappear under the constraint. These
models are in general simpler to analyze, and, at least in one and two dimensions, we have
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FIGURE 1.1. This figure shows how, in the model described in Example 2.1, a
mobile cluster can propagate. The mobile cluster here consists of the two empty
sites, and after a sequence of 1 allowed transitions it is moved one step to the
right. See Example 3.14.

a relatively good understanding of their behavior [21, 20, 15, 14, 13, 12]. In fact, one can
identify a handful of universality classes describing the properties of a kinetically constrained
model. Moreover, a simple criterion allows us to determine, given any translation invariant
local constraint, to which universality class the model belongs. In the case of conservative
kinetically constrained lattice gases, however, only a few specific models have been analyzed
[2, 6, 11, 23, 29, 22, 4, 9, 25], and no general results are available.

We distinguish between two types of kinetically constrained lattice gases—cooperative and
noncooperative. In a cooperative dynamics, any large scale change in the configuration forces
many particles to move in order to "free up" space. In noncooperative models, small empty
clusters can move around the lattice, without requiring any cooperation from other sites near
them. Consider the example introduced above. Figure 1.1 shows how, in two allowed transi-
tions, two neighboring vacancies can propagate to the right, no matter what the occupation
is elsewhere. We say that these vacancies form a mobile cluster. Noncooperative models are
those where a mobile cluster exists, and cooperative models are models where no finite set
of vacancies can propagate without any outside help. See Definition 3.13.

One simple implication of the presence of a mobile cluster is that the critical density of the
model is 1 (equivalently, the critical value of q is 0). This means that for any q > 0, in an
infinite system, there exists with probability 1 a sequence of allowed transitions in the end
of which the origin (or any other arbitrary vertex) is empty. Indeed, since a mobile cluster
consists of some fixed number of vacancies, if q > 0 there will almost surely be an empty
mobile cluster somewhere in Zd. We can then move this cluster until one of its vacancies
reaches the origin. In cooperative models identifying the critical density is more complicated.
The only cooperative kinetically constrained lattice gas studied in the mathematics literature
is the Kob-Andersen model [29], where the critical density is also 1; but in general cooperative
models may have critical densities which are strictly smaller.

Close to criticality, when q � 1, most sites are occupied, and the constraint is rarely satis-
fied. The dynamics then tends to slow down, making typical time scales diverge. We will try
to understand how significant this effect is. In the unconstrained model (namely the simple
exclusion process), time scales diffusively, as the square of the distance:

typical time ≈ C × typical distance2.

We will see that noncooperative models are also diffusive—the constraint may affect the
coefficient C, but the exponent remains 2. This will be done in four different contexts, giving
different interpretations to “typical time” and “typical distance”.
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The first time scale we study is the relaxation time, describing the time scale over which
correlations are lost. Consider some observable f depending on the configuration, and mea-
sure it at time 0 and at time t. In some cases, the correlation between these two quantities,
f0 and ft, decreases exponentially fast with t—

Corr(f0, ft) ≤ e−t/τ .

The best (i.e. smallest) coefficient τ for which this decay hold uniformly (i.e. for all f) is
the relaxation time. In general, the relaxation time can be infinite, and this is in fact the
case for kinetically contrained lattice gases on the infinite lattice. In sections 4 and 5 we
study the relaxation time on a finite box, of length L. We will see that the relaxation time is
proportional to L2, and that the corresponding coefficient diverges as a power law for small
values of q.

In Section 6 we study the diffusion coefficient associated with the dynamics. This coeffi-
cient, generally speaking, describes the large scale evolution of the density profile. Consider
for example a one dimensional model defined on a large interval {1, . . . , L}. Assume that
the initial configuration approximates some given density profile ρ0 : [0, 1] → [0, 1]. Roughly
speaking, this means that the number of particles in an interval {x − l/2, . . . , x, . . . , x + l/2}
of “medium” length (i.e. 1� l � L) is close to lρ(x/L). Then, when the system is diffusive,
we expect the configuration at a later time t to approximate the same profile ρ0 if t � L2

(before the diffusive time scale), some evolving profile ρ(t/L2, ·) when t is of the order L2 (in
the diffusive time scale), and a uniform profile when t � L2 (after the diffusive time scale).
Moreover, the evolution in the diffusive scale is given by a diffusion equation

∂τρ(τ, ξ) = ∂ξD(ρ(τ, ξ))∂ξρ(τ, ξ).

The diffusion coefficient D tells us, within the diffusive scale, how fast the density profile
changes. In particular, if D = 0 the density profile does not evolve in diffusive time scales.
When this picture indeed describes the behavior of the model, we say that it converges to a
hydrodynamic limit in the diffusive scale. This hydrodynamic limit is given by the diffusion
equation above. For a more complete discussion see, e.g., [17].

Proving rigorously converges to a hydrodynamic limit is not an easy task, accomplished
only for one example of a kinetically constrained lattice gas [11, 3]. In fact, it cannot hold in
full generality—a configuration such as the one shown in Figure 1.2 approximates the profile

ρ0(x) =

1 x ≤ L/2,

2/3 x > L/2.

At the same time, the configuration is blocked, namely, no particle is allowed to jump. Thus,
the density profile remains fixed, and cannot converge to a hydrodynamic limit. This initial
configuration, though, is very specific, and one may still hope that, by restricting to a more
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FIGURE 1.2. We see here a blocked configuration for the model in Example
2.1—in the left half all sites are filled, while in the right half one in every three
sites is empty. No particle could jump to an empty site, hence the configuration
is blocked. In particular, it cannot converge to the hydrodynamic limit.

generic initial state, the dynamics will convergence to a hydrodynamic limit. This is proven
in [11] for the model they study, but a general proof seems to be very difficult.

Still, even without proving convergence, studying the diffusion coefficient is an interesting
problem, allowing us to obtain a plausible candidate for the hydrodynamic limit [1, 28, 25].
Moreover, the strategy of [25] shows convergence to a hydrodynamic limit in a “soft” sense
whenever the model is rotation invariant. In particular, a strictly positive diffusion coefficient
is a good indication that the density profile evolves over diffusive time scales. In Section 6
we show that the diffusion coefficient of noncooperative kinetically constrained lattice gases
is indeed positive, and that it decays at most polynomially fast for small q.

The last interpretation of “typical time” and “typical distance” we consider is perhaps the
most intuitive. Assume that the initial configuration has a particle at the origin called the
tracer (but otherwise sampled from equilibrium). One may think of the tracer as playing the
role of the pollen grain in Brown’s famous experiment. We then follow its motion, and ask
what is the time it would typically take in order to cross a certain distance. Diffusive scaling
means that this time scales as the square of the distance. A general argument of [16] shows a
much stronger result—under diffusive scaling, the path of the tracer converges to a Brownian
motion. The variance of this Brownian motion is called the self diffusion Ds, and when it is
strictly positive the Brownian motion in nondegenerate, i.e., the relevant time scale is indeed
diffusive.

All quantities mentioned above have variational characterizations, involving infima or
suprema over local functions, see equations (4.2), (6.1), and (7.1). These formulations allow
us to analyze them using canonical path arguments, which in the lack of attractivity have
proven extremely useful in the study of kinetically constrained models and kinetically con-
strained lattice gases (see, e.g., [5, 6, 2, 22, 4, 25]). In this paper, following [22, 9, 25],
we formulate these argument in the language of multistep moves, see Definition 3.1. These
are sequences of transitions, each allowed for the dynamics, leading to some desired final
configuration.

1.1. Structure of the paper. In Section 2 we set up some of the notation, and define ki-
netically constrained lattice gases. We also introduce two examples that will be referred to
throughout the paper.

Is Section 3 we introduce the notion of a multistep move and its basic properties. We then
use this notion in order to precisely define of a mobile cluster and noncooperative models.
Finally, we provide a slightly weaker characterization of noncooperative models.
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The two following sections discuss the relaxation time in two different settings—Section 4
concerns with systems connected to a reservoir, while in Section 5 we analyze closed systems.
The result of Section 4 shows diffusivity of the relaxation time in all noncooperative models.
It generalizes [2], and the proof uses the same strategy in a wider context and in the language
of multistep moves.

Studying the relaxation time in closed systems is much more involved. This problem was
analyzed for one noncooperative model in [11], proving diffusive scaling if the density is low
enough or when adding a small perturbation violating the constraint. The same model was
later considered in [23], where diffusivity was proven for all densities and with no pertur-
bation. Here, in Section 5, we generalize the result of [23] to some class of noncooperative
models. The proof of the result uses a completely different strategy—while [23] relies on spe-
cific combinatorial details of the model they study, the proof here only uses general properties
of mobile clusters. This new strategy allows us to obtain a result in a wider context.

In Section 6 we show that the diffusion coefficient is positive for all noncooperative models.
In order to achieve that, we introduce a new comparison argument using multistep moves
(Lemma 6.4). We then construct an auxiliary dynamics which on one hand can be compared
to the kinetically constrained gas in question, and on the other hand possesses a special
property allowing us to calculate its diffusion coefficient explicitly.

The positivity of the self-diffusion coefficient for all noncooperative models (in dimension
2 and above) is proven in Section 7. The proof applies a strategy similar to [27, II.6], using a
multistep move in order to compare the kinetically constrained lattice gas to a random walk.

We conclude with open problems that this work suggests.

2. The model

2.1. Notation. In order to simplify the exposition of the model, we start by defining some of
the notation we use.

• For n ∈ N, we denote [n] = {1, . . . , n}.
• We will consider models defined either on Zd, a finite box [L]d for L ∈ N, or the torus
Zd/LZd. We denote by {eα}dα=1 the standard basis, and we say that two sites x and y are
neighbors, denoted x ∼ y, if x−y ∈ {±e1, . . . ,±ed}. The boundary of a set Λ ⊂ Zd, denoted
∂Λ, is the set of sites in Λ that have a neighbor outside Λ.
• For any finite sequence of sites x1, . . . , xn, we denote by σ = (x1, . . . , xn) the corresponding

cyclic permutation, i.e., for any site y

σ(y) =


xk+1 if y = xk for k ∈ [n− 1],

x1 if y = xn,

y otherwise.
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For a fixed site x we denote by τx the permutation on Zd given by a translation by x, i.e.,
for any site y ∈ Zd

τx(y) = y + x.

• A configuration is an element η of Ω = ΩΛ = {0, 1}Λ, where Λ is either Zd, [L]d, or the
torus. We say that a site x ∈ Λ is empty if η(x) = 0 and occupied if η(x) = 1.
• For η ∈ Ω and a site x we define ηx to be the configuration η after flipping the occupation

at x.
• For η ∈ Ω and two sites x and y we define ηx,y to be the configuration η after exchanging

the occupation values at x and y.
• For η ∈ Ω and a permutation σ, we define ση to be the configuration after applying σ, i.e.,

for any site y
(ση)(y) = η(σ−1(y)).

In particular, for any two sites x and y we can write ηx,y = (x, y)η.
• For a f : Ω→ R and two sites x and y,

∇xf(η) = f(ηx)− f(η),

∇x,yf(η) = f(ηx,y)− f(η).

• For a f : Ω→ R and a permutation σ, we define the function σf as

σf(η) = f(σ−1η).

Finally, we note that throughout the paper C represents a generic positive constant, that may
depend only on the model (dimension and constraints), and in particular does not depend
on the parameter q.

2.2. Kinetically constrained lattice gases. Kinetically constrained lattice gases are interact-
ing particle systems, defined on Zd, with generator L acting on any local function f : Ω→ R
as

Lf(η) =
∑
x∼y

cx,y(η)∇x,yf(η). (2.1)

The rates cx,y must have the following properties:

(1) For any x ∼ y and η ∈ Ω, cx,y(η) ∈ {0} ∪ [1, cmax] for some cmax ≥ 1.
(2) The rate cx,y depends only on the configuration outside x and y.
(3) The rates are nondegenerate, i.e., for any edge x ∼ y there exists a configuration

η ∈ Ω such that cx,y(η) ≥ 1 and a configuration η′ ∈ Ω such that cx,y(η) = 0.
(4) For fixed x and y, the rate is a decreasing function of η, i.e., emptying sites could only

speed up the dynamics.
(5) The model is homogeneous: cx,y(η) = cτz(x),τz(y)(τzη) for any η ∈ Ω and x, y, z ∈ Zd.



NONCOOPERATIVE MODELS OF KINETICALLY CONSTRAINED LATTICE GASES 7

(6) The rates have finite range, i.e., cx,y depends only on the occupation of the sites in
some box x+ [−R,R], where R is called the range.

Sometimes we refer to the rate cx,y as the constraint (having in mind the case cmax = 1), and
say that the constraint is satisfied when cx,y ≥ 1 and not satisfied when cx,y = 0.

We may also consider the model on a subset of the lattice Λ ⊂ Zd (usually [L]d) by thinking
of the sites outside Λ as empty. The generator has the same form as (2.1), with sum taken
over x, y ∈ Λ. The constraint cx,y(η) for η ∈ {0, 1}Λ is then defined to be cx,y(η), where
η ∈ {0, 1}Zd is the configuration which equals η on Λ and 0 outside Λ. Theses are the empty
boundary conditions. The occupied boundary conditions are defined analogously. Finally, peri-
odic boundary conditions are defined when considering the model on the torus. The constraint
cx,y(η) for η ∈ {0, 1}Zd/LZd is then given by cx,y(η) with η(x) = η(x mod Ld).

Under the assumptions above, the dynamics is reversible with respect to a product measure
for any density in [0, 1]. We refer to this measure as the equilibrium measure (at a given
density). The density of empty sites is denoted by q ∈ [0, 1], so the equilibrium measure
µ = µq assigns to each site an independent Bernoulli random variable with parameter 1− q.

On a finite box Λ = [L]d, we may consider a kinetically constrained lattice gas with reservoir
on the boundary. This model is defined by the generator Lr operating on any local function
f : Ω→ R as

Lrf(η) =
∑
x,y∈Λ
x∼y

cx,y(η)∇x,yf(η) +
∑
x∈∂Λ

cx∇xf(η), (2.2)

where cx(η) = qη(x) + (1 − q)(1 − η(x)). Note that cx(η) is chosen such that the process
remains reversible with respect to µ.

2.3. Examples. Throughout the paper, we will refer to two fundamental examples:

Example 2.1. The 1 dimensional model, with constraint

cx,x+1(η) =

1 if η(x− 1) = 0 or η(x+ 2) = 0,

0 otherwise.

This model was introduced in [2], and further studied in [23]. In [11] a slight variation
was introduced, where the rate cx,x+1 equals 2 if both η(x − 1) and η(x + 2) are empty. This
difference is of no importance to the analysis in this paper, but it does introduce a significant
simplification in proving the convergence to a hydrodynamic limit.

Example 2.2. The 2 dimensional model with constraint

cx,x+eα(η) =

1 if η(x− eα) = 0 or η(x+ 2eα) = 0,

0 otherwise,

for α ∈ {1, 2}.
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This could be seen is a generalization of Example 2.1, also studied in [2].

3. Multistep moves

The main tool we use in this paper are multistep moves, which are sequences of transitions
allowed for the dynamics, taking us from one configuration to the other. This formulation,
used in [22, 9, 25], makes the application of canonical path methods more transparent.

A multistep move provides, for η in some fixed set of configuration (the domain), a se-
quence of transitions that are allowed for the dynamics. That is, at each step t it will tell us
which edge to exchange in order to move from the configuration ηt to ηt+1. In order for the
move to be valid, in all exchanges the constraint must be satisfied. This is expressed in the
following definition:

Definition 3.1 (Multistep move). For fixed T > 0, a T -step move M defined on DomM ⊆ Ω

is a triple
(
(ηt)

T
t=0, (xt)

T−1
t=0 , (et)

T−1
t=0

)
; where (ηt)

T
t=0 is a sequence of functions ηt : DomM → Ω,

(xt)
T−1
t=0 is a sequence of functions xt : DomM → Zd, and (et)

T−1
t=0 is a sequence of functions

et : DomM → {±e1, . . . ,±ed}. The move must satisfy the following properties:

(1) For any η ∈ DomM , η0(η) = η.
(2) For any η ∈ DomM and t ∈ {0, . . . , T − 1},

(a) on the infinite lattice or a finite box with no reservoirs,

ηt+1(η) = ηt(η)xt(η),xt(η)+et(η) and cxt(η),xt(η)+et(η)(ηt(η)) = 1.

(b) on a finite box Λ with reservoirs, either

ηt+1(η) = ηt(η)xt(η),xt(η)+et(η) and cxt(η),xt(η)+et(η)(ηt(η)) = 1,

or
ηt+1(η) = ηt(η)xt(η) and xt(η) ∈ ∂Λ.

When context allows we omit, with some abuse of notation, the explicit dependence on η

(writing ηt, xt, et rather than ηt(η), xt(η), et(η)).

We continue with several basic notions related to multistep moves.

Definition 3.2 (Information loss). Consider a T -step move M = ((ηt), (xt), (et)) and t ∈
{0, . . . , T}. The loss of information at time t is defined as

2LosstM = sup
η′,x′,e′

# {η ∈ DomM such that ηt(η) = η′, xt(η) = x′ and et(η) = e′} ,

where the supremum is taken over η′ ∈ DomM , x′ ∈ Zd and e′ ∈ {±e1, . . . ,±ed}. We also
define

LossM = sup
t

LosstM.

That is, for given t, η′, x′, e′ there are at most 2LossM possible configurations η ∈ DomM for
which ηt = η′, xt = x′ and et = e′.
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Definition 3.3 (Energy barrier). Consider a T -step move M = ((ηt), (xt), (et)) for a kinetically
constrained lattice gas defined on a finite box Λ with reservoirs on the boundaries. The energy
barrier is

EB(M) = sup
t∈{0,...T}

sup
η∈Dom Ω

(# {empty sites in ηt} −# {empty sites in η}) .

Note that, since η0 = η, EB(M) ≥ 0.

Definition 3.4 (Composition of multistep moves). Fix a T1-step move M1 = ((η1
t ), (x

1
t ), (e

1
t ))

and a T2-step move M2 = ((η2
t ), (x

2
t ), (e

2
t )) such that for any η ∈ DomM1, η1

T1
(η) ∈ DomM2.

Then their composition M2 ◦M1 is the T -step move M = ((ηt), (xt), (et)), with T = T1 + T2

and DomM = DomM1 given by

ηt(η) =

η1
t (η) if t ∈ {0, . . . , T1},

η2
t−T1

(η1
T (η)) otherwise,

xt(η) =

x1
t (η) if t ∈ {0, . . . , T1},

x2
t−T1

(η1
T (η)) otherwise,

et(η) =

e1
t (η) if t ∈ {0, . . . , T1},

e2
t−T1

(η1
T (η)) otherwise.

Definition 3.5 (Associated permutation). We consider here a model with no reservoirs. Fix
a T -step move M = ((ηt), (xt), (et)) and η ∈ DomM . Then the associated permutation σ

is a permutation on the sites of Zd given by the product of transpositions (xT−1, xT−1 +

eT−1)(xT−2, xT−2 + eT−2) . . . (x0, x0 + e0).
We say that the move M is compatible with a permutation σ if, for any η ∈ DomM , the

associated permutation is σ.

Observation 3.6. Fix a T -step move M = ((ηt), (xt), (et)) and η ∈ DomM . Then ηT = ση, i.e.,
for any x ∈ Zd,

ηT (σ(x)) = η(x).

Observation 3.7. Consider two multistep moves M1 and M2. Assume that M1 is compatible
with a permutation σ1 and M2 with a permutation σ2. If M2 ◦M1 is well defined, then it is
compatible with σ2σ1.

Definition 3.8 (Deterministic move). A T -step move M = ((ηt), (xt), (et)) is called determin-
istic if the sequences (xt)

T−1
t=0 and (et)

T−1
t=0 do not depend on η, that is, for any η, η′ ∈ DomM

and any t ∈ {0, . . . , T − 1}, xt(η) = xt(η
′) and et(η) = et(η

′). Note that a deterministic move
is always compatible with a permutation, and has 0 loss of information.
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Observation 3.9. Consider a deterministic T -step move M = ((ηt), (xt), (et)) compatible with
a permutation σ. The there exists an inverse move M−1 with domain

DomM−1 = {η ∈ Ω : ση ∈ DomM} ,

which is a T -step move compatible with σ−1.

These are the general definitions and basic properties of multistep moves. We now continue
with a few definitions related to the noncooperative nature of the model. In each definition,
we will describe a move that changes the configuration in a desired way without “disturbing”
too many sites, under the condition that there is a mobile cluster near by. The way in which
we change the configuration is given by the permutation the move is compatible with. The
fact that we do not want to disturb many sites is expressed in the fact that all xt’s are restricted
to some given box. The requirement that a mobile cluster is available is expressed in the
domain of the multistep move.

The first move we define will allow us to move a mobile cluster C on the lattice:

Definition 3.10 (Translation move). Fix a finite set C ⊂ Zd, l > 0, e ∈ {±e1, . . . ,±ed} and
x ∈ Zd. A translation move in [−l, l]d of the cluster x + C in the direction e is a TTr-step move
Tre(x+ C) satisfying:

(1) Dom Tre(x+ C) = {η ∈ Ω : x+ C is empty}
(2) Tre(x+ C) is a deterministic move, compatible with a permutation σ.
(3) σ(x+ y) = x+ y + e for any y ∈ C.
(4) For all t ∈ {0, . . . , T − 1}, xt ∈ x+ [−l, l]d and xt + et ∈ x+ [−l, l]d.

For brevity, we may write Tr±α rather than Tr±eα.

Observation 3.11. Fix a C ⊂ Zd, l > 0, e ∈ {±e1, . . . ,±ed} and x ∈ Zd. Then Tre(x + C)−1 is
a translation move in [−l, l]d of the cluster x + e + C in the direction −e. We may therefore
always assume that the translation moves are chosen such that Tre(x+C)−1 = Tr−e(x+e+C).

Once we are able to move the mobile cluster around, we need to use it in order to move
particles in its vicinity.

Definition 3.12 (Exchange move). Fix a finite set C ⊂ Zd, l > 0, e ∈ {±e1, . . . ,±ed} and
x ∈ Zd. An exchange move in [−l, l]d using the cluster x + C in the direction e is a TEx-step
move Exe(x+ C) satisfying:

(1) Dom Exe(x+ C) = {η ∈ Ω : x+ C is empty}
(2) Exe(x+C) is a deterministic move, compatible with the permutation (x+y, x+y+ e),

where y = le.
(3) For all t ∈ {0, . . . , T − 1}, xt ∈ x + [−l, l]d ∪ {x + (l + 1)e} and xt + et ∈ x + [−l, l]d ∪
{x+ (l + 1)e}.
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FIGURE 3.1. This is an illustration of the translation move in the model de-
scribed in examples 2.2 and 3.15. The mobile cluster is given by an empty 2×2
square. In this figure we see how it could move one step up.

Definition 3.13 (Mobile cluster). A mobile cluster C is a finite set of sites, for which there ex-
ists l > 0 such that Tre(x+C) and Exe(x+C) could be constructed for all e and x. Equivalently,
by translation invariance, there exists l > 0 such that Tre(C) and Exe(C) could be constructed
for all e.

A kinetically constrained lattice gas is called noncooperative if there exists a mobile cluster.

Example 3.14. The model in Example 2.1 is noncooperative—take C = {1, 2} and l = 3. We
need to construct four moves: Tr1(C),Tr−1(C),Ex1(C),Ex−1(C).

Tr1(C) will be a 2-step move ((η0, η1, η2), (x0, x1), (e0, e1)) operating on η ∈ Dom Tr1(C) as
follows:

η0 = η, η1 = η2,3 = (2, 3)η, η2 = (2, 3, 1)η,

x0 = 2, e0 = 1, x1 = 1, e1 = 1.

Recalling that η ∈ Dom Tr1(C) means η(1) = η(2) = 0, it is straightforward to verify that the
move is well defined and that it is indeed a translation move. See Figure 1.1.

Tr−1(C) is defined as Tr1(−1 + C)−1.
Ex1(C) is the 1-step move exchanging the sites 3 and 4, which is allowed since 2 must be

empty.
Ex−1(C) could be constructed as the composition

Ex−1(C) = Tr−1(−1 + C)−1 ◦ Tr−1(−2 + C)−1 ◦ Tr−1(−3 + C)−1 ◦ Tr−1(−4 + C)−1 ◦ Ex1(−5 + C)

◦ Tr−1(−4 + C) ◦ Tr−1(−3 + C) ◦ Tr−1(−2 + C) ◦ Tr−1(−1 + C) ◦ Tr−1(C).

The composition is well defined (recalling Tr−1(x + C)−1 = Tr1(x − 1 + C), so its domain
consists of the configurations where x − 1 + C is empty). Moreover, it is a composition of
deterministic moves, and compatible with

(1, 2, 0)(0, 1,−1)(−1, 0,−2)(−2,−1,−3)(−3,−2,−4)(−2,−1)

(−4,−2,−3)(−3,−1,−2)(−2, 0,−1)(−1, 1, 0)(0, 2, 1) = (−3,−4).

Example 3.15. The model in Example 2.2 is noncooperative, with C = {e1 +e2, e1 +2e2, 2e1 +

e2, 2e1 + 2e2} and l = 3. The construction of the multistep moves is the same as the previous
example, see Figure 3.1.
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...

FIGURE 3.2. We see here how the exchange move could be constructed, see
Claim 3.17. For the sake of this illustration, we assume that it suffices to empty
the two sites marked with a red square in order to free the edge (0, e1) marked
in green. The mobile cluster C, marked with blue stars, is empty. In addition,
a translation of C, marked with blue triangles, is also empty. After applying the
multistep move described in the figure the constraint is satisfied at the edge
(0, e1), so we may exchange the two sites and move the mobile clusters back to
their original position.

To conclude this section, we see in the following proposition that if we are able to con-
struct, for any direction, a cluster that is free to move in that direction, then the model is
noncooperative, i.e., there is some (possible very large) cluster that is able to move in all
directions, and to exchange edges in its vicinity.

Proposition 3.16. Assume that for any e ∈ {e1, . . . , ed} there exists Ce and le, such that Tre(Ce)
exists. Then the model is noncooperative, i.e., there exists a mobile cluster C.

Proof. The construction of the cluster C is explained in the appendix of [25] (claims A11
and on). Since the result there is stated in a slightly different context (and with different
notation), we explain here briefly how the cluster is constructed. The reader may consult
[25] for any missing details.

Claim 3.17. Fix e. If Tre(C) exists for some C and l, then Tre(C ′) and Exe(C ′) exist for some C ′

and l′.

Proof. Without loss of generality e = e1. Let {y1, . . . , yk} ∈ (∞, 0] × Zd−1 be finite set of
sites such that c0,e ≥ 1 if {y1, . . . , yk} is empty. This set has to exist since Tre(C) exists. Fix
C ′ =

⋃k
i=1 (yi − ile1 + C). Define Ex(C ′) by translating the copies of C until y1, . . . , yk are all

empty, then exchange 0 and e, and finally roll back the translation moves. See Figure 3.2. �

Claim 3.18. Assume Tr1(C1), Ex1(C1), Tr2(C2), Ex2(C2),...,Trk(Ck), Exk(Ck) are defined. Then
there exist C ′k and l′k such that for all y ∈ [l1,∞]e1 +Ze2 + · · ·+Zek we may define a multistep
move Exy1 exchanging (y, y + e1).

Proof. Consider first k = 2, and denote C1 = {x1, . . . , xn}. We choose

C ′2 = C1 ∪

(
n⋃
i=1

xi − le2 + C2

)
.

By applying translation and exchange moves using the cluster xi − le2 + C2, we are able to
exchange xi with xi + e2. Doing that for all i, we end up with an empty cluster (e2 + C1) ∪
(
⋃n
i=1 xi − le2 + C2). We can repeat the operation (with one additional translation move for
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each i), reaching an empty cluster (2e2 + C1) ∪ (
⋃n
i=1 xi − le2 + C2). In fact, by adjusting the

number of repetitions we are able to empty all sites of (w + C1) ∪ (
⋃n
i=1 xi − le2 + C2) where

w = y− (y · e1)e1. Now, since w+C1 is empty, we can use Tr1(w+C1) and Ex1(w+C1) in order
to exchange y and y + e1. Rolling back all changes, we end up with the move Exw1 .

For larger values of k we follow the same construction by induction—use
∣∣C ′k−1

∣∣ copies of
Ck in order to move a single copy of C ′k−1 in the ek direction y · ek times. Then apply (the
translation of) Exy−y·ek1 in order to exchange y and y + e1, and roll back to place C ′k in its
original location. �

This claim allows us to define a cluster C ′d, which allows exchanges in the direction e1. We
may construct in the same manner clusters allowing exchanges in any direction:

Corollary 3.19. For any e, there exist le and Ce, such that we may define a multistep move
Exye(x + Ce) exchanging x + y with x + y + e whenever x + Ce is empty, for all y such that
y · e ≥ le.

To conclude, consider 2d disjoint copies of the clusters defined in the corollary above placed
on the diagonal—

C =

(
d⋃

α=1

−αl(1, 1, . . . , 1) + Ceα

)⋃(
d⋃

α=1

αl(1, 1, . . . , 1) + Ce−α

)
,

for large enough l to guarantee that the union is indeed disjoint. Now, in order to construct
Exeα(C) we may simply use Exyeα(x+ Ceα) with x = −αl(1, . . . , 1) and y = αleα − x (and anal-
ogously for Exe−α(C)). In order to construct Treα, we first use the cluster −αl(1, . . . , 1) + Ceα
in order to move in the direction eα all vacancies in

⋃d
α=1

(
αl(1, 1, . . . , 1) + Ce−α

)
. Then we use

the cluster αl(1, . . . , 1)+eα+Ce−α in order to move all vacancies in
⋃d
α=1

(
−αl(1, 1, . . . , 1) + Ceα

)
in the direction eα. This concludes the proof of the proposition. �

4. Relaxation time on a finite box with a reservoir

In this section we consider noncooperative kinetically constrained lattice gases on a finite
box [L]d with reservoirs on the boundary. In [2], the relaxation times of two models were
studied, and a diffusive scaling was proven. We will follow their strategy, showing a diffusive
scaling with power law dependence on q.

In order to define the relaxation time, we first write the Dirichlet form associated with the
generator Lr given in equation (2.2):

Drf = µ

[ ∑
x∼y∈Λ

cx,y(∇x,yf)2

]
+ µ

[∑
x∈∂Λ

cx(∇xf)2

]
. (4.1)

Then the relaxation time is given by

sup
f :Ω→R
Var f 6=0

Var f

Drf
. (4.2)



14 ASSAF SHAPIRA

The following theorem provides an upper bound on the relaxation time:

Theorem 4.1. Consider a noncooperative kinetically constrained lattice gas on a finite box Λ =

[L]d with reservoirs (see equation (2.2)) and empty boundary conditions. Fix a mobile cluster C
of size N . Then for any f : Ω→ R,

Var f ≤ Cq−N−1L2Drf,

where the variance is taken with respect to the equilibrium µ and Dr is the associated Dirichlet
form given in equation (4.1).

4.1. Proof. We will first prove Theorem 4.1 when q ≤ 1
2
, and then briefly explain how to

adapt the proof for q > 1
2
.

We follow the steps of [2]—for any x ∈ Λ, we will define a multistep move that creates a
mobile cluster at the boundary and uses it in order to flip the occupation at x. We will then
prove the theorem using this multistep move together with the inequality

Var f ≤ q(1− q)µ

[∑
z∈Λ

(∇zf)2

]
. (4.3)

Lemma 4.2. For any z ∈ Λ, there exists a T -step move Flipz = ((ηt), (xt), (et)) such that:

(1) Dom Flipz = ΩΛ.
(2) For any η, the final configuration is given by ηT (η) = ηz.
(3) T ≤ CL.
(4) The information loss Loss Flipz ≤ C.
(5) The energy barrier EB Flipz ≤ N + 1.
(6) For any t ∈ {0, . . . , T}, x(t) ∈ z + ∆, where ∆ ⊂ Zd is fixed and |∆| ≤ CL.
(7) Each site x ∈ Λ is changed a bounded number of times, i.e., {t : xt = x} ≤ C.

Proof. Let z = z − e1 · z, and consider the configuration η defined on the infinite lattice as
follows

η(y) =


η(y) if y ∈ Λ,

1− η(z) if y = z,

0 if y ∈ z − le1 + C,

1 otherwise.

(4.4)

We will define a T -step move M operating on this configuration by composing exchange
and translation moves as follows—

(1) Using the mobile cluster z−le1+C, apply the exchange move Ex1(z−le1+C) (Definition
(3.12)) in order to exchange z with z + e1.

(2) Apply the translation move Tr1(z − le1 + C) (Definition (3.10)) in order to move the
cluster z − le1 + C one step to the right.
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(3) Continue to apply these two moves alternatingly until reaching x, i.e.,

Tr1(yk + C) ◦ Ex1(yk + C) ◦ · · · ◦ Tr1(y1 + C) ◦ Ex1(y1 + C) ◦ Tr1(y0 + C) ◦ Ex1(y0 + C),

where yi = z − le1 + ie1 for all i, and k is chosen such that yk = z − 2e1.
(4) Apply the exchange move Ex1(yk + e1 + C) in order to exchange yk + e1 with z.
(5) Wind back the exchanges and translations of step 3 and move the mobile cluster back

to z − le1 + C.

Putting everything together, we obtain

M = Ex1(y0 + C) ◦ Tr−1(y1 + C) ◦ · · · ◦ Ex1(yk + C) ◦ Tr−1(yk+1 + C) ◦ Ex1(yk+1 + C)

◦Tr1(yk + C) ◦ Ex1(yk + C) ◦ · · · ◦ Tr1(y0 + C) ◦ Ex1(y0 + C).

We have thus constructed a multistep move M with the following properties:

(1) η ∈ DomM for any η ∈ ΩΛ.
(2) M is compatible with the transposition exchanging z and z.
(3) T ≤ CL.
(4) LossM = 0 and EBM = 0.
(5) All exchanges occur in a tube z + [−l, L]× [−l, l]d−1 for some (large enough) fixed l.

The move Flipz that we construct will simply be the restriction of M to Λ—if we denote
M = (ηt, xt, et), then Flipz will be such that, for any y ∈ Λ,

ηt(y) = ηt(y).

All that is left is to verify that this move satisfies the required properties:

(1) It is well-defined on the entire ΩΛ—for any η ∈ ΩΛ we know that η defined above is in
DomM . In addition, a transition in M outside Λ does not change ηt, a transition on
the boundary corresponds to a reservoir term for ηt, and a transition inside Λ which
is allowed for ηt is certainly allowed for ηt. This means that all transitions in Flipx are
allowed, making it a valid move.

(2) Since z /∈ Λ and η(z) = 1− η(z), the fact that M is compatible with the transposition
exchanging z and z implies that the final configuration of Flipz is ηz.

(3) T = T ≤ CL.
(4) In order to reconstruct ηt from ηt it is enough to know the occupation at some finite

box to the left of z. Since M has 0 loss of information, the size of this box bounds the
loss of information.

(5) The number of vacancies in ηt is certainly smaller than that of ηt, which exceeds the
number of vacancies of η by at most N + 1.

(6) Choosing ∆ = z + [−l − L,L]× [−l, l]d−1 will suffice.
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(7) Since the exchange and translation moves operate locally, a site z could be “touched”
by a bounded number of such moves, each of which being able to change z a bounded
number of times. �

We will now use Lemma 4.2 in order to prove Theorem 4.1. Start by considering, for each
z ∈ Λ, the T -step move Flipz = (ηz, xz, ez), and using it in order to write

(∇zf)2 =

(
T−1∑
t=0

∇tf(ηzt )

)2

≤ CL

T−1∑
t=0

(∇tf(ηzt ))
2 ,

where ∇t stands for ∇xzt ,x
z
t+ezt

for a bulk exchange (ηt+1 = η
xzt ,x

z
t+ezt

t ), or ∇xzt
for a boundary

flip (ηt+1 = η
xzt
t ).

Then by equation 4.3

Var f ≤ CLq(1− q)µ

[∑
z∈Λ

T−1∑
t=0

(∇tf(ηzt ))
2

]
= CLq

∑
η∈ΩΛ

µ(η)
∑
z∈Λ

∑
t

∑
η′∈ΩΛ

∑
x∈z+∆

∑
e

1bulk exchange1xzt (η)=x1ezt (η)=e1ηt(η)=η′ cx,x+e(η
′) (∇x,x+ef(η′))

2

+ CLq
∑
η∈ΩΛ

µ(η)
∑
z∈Λ

∑
t

∑
η′∈ΩΛ

∑
x∈∂Λ∩(z+∆)

1bounday flip1xzt (η)=x1ηt=η′ (∇xf(η′))
2

≤ CLq
∑
x∈Λ

∑
e

∑
η′∈ΩΛ

µ(η′)cx,x+e(η
′) (∇x,x+ef(η′))

2
∑
η∈ΩΛ

µ(η)

µ(η′)

∑
z∈x−∆

∑
t

1xzt (η)=x1ηt(η)=η′

+ CL
∑
x∈∂Λ

∑
η′∈ΩΛ

µ(η′)cx(η
′) (∇xf(η′))

2
∑
η∈ΩΛ

µ(η)

µ(η′)

∑
z∈x−∆

∑
t

1xzt (η)=x1ηt=η′ .

We will now use the properties of Flipz in order to bound the different terms above. First,
since we assume q ≤ 1

2
,

µ(η)

µ(η′)
≤ q−EB(Flipz) = q−N−1.

The bound on the loss of information allows us to write
∑

η∈ΩΛ
1ηt(η)=η′ ≤ C.

The last property of the flip move implies that
∑T

t=0 1xzt (η)=x ≤ C.
Putting everything together, we obtain

Var f ≤ CLq−N−1 |∆|
∑
x∈Λ

∑
e

∑
η′∈ΩΛ

µ(η′)cx,x+e(η
′) (∇x,x+ef(η′))

2

+CLq−N−1 |∆|
∑
x∈∂Λ

∑
η′∈ΩΛ

µ(η′)cx(η
′) (∇xf(η′))

2

≤ CL2q−N−1DΛf.

This concludes the proof when q ≤ 1
2
.
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The case q > 1
2

could be thought of as a negative temperature setting, so the relevant
quantity is the negative energy barrier—rather than counting the excess vacancies, we should
count the excess particles. By changing the definition of η given in equation (4.4) such that
η(y) = 0 if y /∈ Λ ∪ {z}, we can construct the Flipz in the same manner, such that at each
t the number of particles in ηt exceeds the number of particles in η by at most 1. The only
estimate that changes is that of µ(η)

µ(η′)
, which becomes µ(η)

µ(η′)
≤ (1 − q)−1, and the rest of the

proof follows. �

5. Relaxation time in a closed system

In this section we consider models on a finite box Λ = [L]d, with no reservoirs. In this
setting the total number of particles is fixed, hence µ cannot be ergodic. Moreover, even if
we condition µ to some fixed number of vacancies k, the measure that we obtain is in general
not ergodic due to the constraint.

In particular, at least if q is not too large, one may construct blocked configuration. These
are configurations where no particle is allowed to jump, and therefore do not change during
the dynamics (see, e.g., Figure 1.2). If k <

(
L

R+1

)d (where R is the range of the constraint),
we may place the vacancies such that no two empty sites are at distance less than R. Since
the model is nondegenerate the constraint is not satisfied for the edges adjacent to a vacancy,
and the configuration is indeed blocked.

For noncooperative models, we note that two configurations containing a mobile cluster,
at least for k large enough, are always in the same ergodic component—consider two con-
figurations η and η′ with k vacancies, each containing a mobile cluster, x + C and x′ + C ′

respectively. Assuming k > |C| + |C ′|, we may use the translation and exchange moves on η

with the cluster x+ C in order to move vacancies to x′ + C ′. Then we use the translation and
exchange moves with the cluster x′ + C ′ to move around all other vacancies to their locations
in η′.

We therefore define the ergodic configurations as follows:

Definition 5.1. Consider a family of mobile clusters {C1, . . . , Cm}. The set of ergodic configu-
rations with k vacancies, denoted Ωk, is given by all configurations η containing k vacancies
connected to a configuration that contains an empty translation of a mobile cluster. More pre-
cisely, η ∈ Ωk if it contains k vacancies, and there exists a T -step move M = ((ηt), (xt), (et)),
a site x ∈ Λ, and some i ∈ [m], such that η ∈ DomM and all sites of x+ Ci are empty for the
configuration ηT (η).

The equilibrium measure µk is the uniform measure on Ωk. We denote in this section µ = µk.

The discussion above implies the following fact:

Fact 5.2. For any family of mobile clusters {C1, . . . , Cm}, and any k > 2 maxmi=1 |Ci|, the measure
µ is ergodic.
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(a) (b)

(c) (d)

FIGURE 5.1. A few configurations in the model of Example 2.2 defined on a
finite box. The mobile cluster of this model is a 2× 2 square (see Example 3.15
and Figure 3.1). Configuration (a) is blocked hence not ergodic, configuration
(b) is not blocked but still not ergodic, configuration (c) contains a mobile
cluster hence ergodic, and configuration (d) is ergodic even though no small
region contains a mobile cluster. See Example 5.4.

Example 5.3. Consider the model of Example 2.1, and the family of mobile clusters {{1, 2},
{1, 3}}. If a configuration η does not contain an empty translation of either cluster, it is
blocked, since all allowed transitions for the dynamics involve two vacancies at distance at
most 2. Therefore, the ergodic configurations in this models are those containing an empty
translation of {1, 3} or {1, 2}.

Example 5.4. In the model introduced in Example 2.2 the ergodic component is more compli-
cated. One can find configurations that are not blocked but still not ergodic, or configurations
which are ergodic but do not contain a mobile cluster of size smaller than L. An explicit de-
scription of Ωk for this model seems to be much more difficult to find than the 1 dimensional
case. See Figure 5.1.

In view of these examples, we will restrict our discussion to models with easily identifiable
set of ergodic configurations:

Hypothesis 5.5. There exists a finite family of mobile clusters, {C1, . . . , Cm}, such that

Ωk = {η : there exist x ∈ Λ and i ∈ [m] for which x+ Ci is in Λ and empty} .
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Fix k > maxmi=1 |Ci|, so Ωk is nonempty and the measure µ is well defined. The Dirichlet
form associated with the generator (2.1) and the (reversible) measure µ is given by

Df = µ

∑
x,y∈Λ
x∼y

cx,y(∇x,yf)2

 . (5.1)

The result of this section is a bound on the relaxation time of 1 dimensional models satis-
fying Hypothesis 5.5:

Theorem 5.6. Consider a noncooperative kinetically constrained lattice gas with occupied bound-
ary conditions in one dimension satisfying Hypothesis 5.5, and let k = bqLc for some q ∈ (0, 1).
Then for L large enough and any f : Ωk → R

Var f ≤ CqCL2Df,

where the variance is taken with respect to µ = µk and D is the associated Dirichlet form given
in equation (5.1).

5.1. Proof. The overall scheme of the proof is similar to that of [11]—we first create many
mobile clusters, and then use them in order to exchange the occupation of pairs of sites. This
will allow us to compare our model with the simple exclusion process on the complete graph.
The main difference between the proof here and the one presented in [11] is that the creation
of the mobile clusters is accomplished without resorting to a perturbed model.

We start with a few definitions, which will depend on a fixed arbitrary mobile cluster C of
size N , and an integer λ > 2N

q
such that Ci ⊂ [λ] for all i ∈ {1, . . . , k}.

Definition 5.7. A box (of size λ) is a subset of Λ of the type λi + [λ], for i ∈ Z. We may
assume that L

λ
∈ N by the same monotonicity argument as in [22, Remark 3.1], and denote

the set of boxes
B = {λi+ [λ], i ∈ Z ∩ [0, L/λ− 1]} .

Definition 5.8. A good box is a box containing an empty translation of C.
A pregood box is a box containing at least N vacancies (recall N = |C|).
We denote by G the event that at least k0 =

⌊
λ−N

(
k
4λ
− 1
)⌋

boxes are good. We assume L
(and therefore k) large enough so that k0 > 0.

Claim 5.9. For any η ∈ Ωk, at least k
2λ

boxes are pregood.

Proof. Let nv be the number of boxes containing exactly v vacancies, so the number of pregood
boxes is

∑λ
v=N nv. Then

k =
λ∑
v=0

vnv =
N−1∑
v=0

vnv +
λ∑

v=N

vnv
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≤ N |B|+ λ

λ∑
v=N

nv ≤
k

2
+ λ ·#pregood boxes. �

Definition 5.10. Let Σ be the set whose elements are of the type s = (o, σ), for o ∈ {+,−}
and σ = (σB)B∈B, where σB is a permutation of the sites of B for any box B ∈ B.

For a configuration η ∈ Ωk and s ∈ Σ, we construct the configuration sη as follows:

(1) Find the the first mobile cluster in the orientation o, that is, the site z ∈ Λ together
with i ∈ {1, . . . , k} such that:
(a) z + Ci is empty for some i ∈ {1, . . . , k}.
(b) z is the leftmost site satisfying (a) if o = +, and the rightmost if o = −. Dif-

ferently stated, for any y 6= z such that y + Cj is empty for some j ∈ {1, . . . , k},
oz < oy.

(2) Identify the set Bo of boxes after z, that is, the boxes B ∈ B in which all sites are
strictly to the right of z + Ci if o = +, or strictly to its left in the case o = −.

(3) For x ∈ Λ, denoting by B the box containing x,

sη(x) =

η(x) if B /∈ Bo,

η(σ−1
B x) if B ∈ Bo.

Observation 5.11. The action defined above is bijective—for any s ∈ Σ we can define s−1 ∈ Σ

by inverting each permutation and keeping the orientation fixed. Then ss−1η = η for any
η ∈ Ωk.

Claim 5.12. Fix η ∈ Ωk. Then
|{s ∈ Σ : sη ∈ G}|

|Σ|
≥ 1

4
.

Proof. We use the notation of Definition 5.10. ∪o∈{±}Bo contains all boxes, except for a max-
imum of 2 boxes containing sites of the mobile cluster. By Claim 5.9, at least k

2λ
− 2 of them

are pregood. Hence, there is an orientation o? ∈ {+,−}, such that the number of pregood
boxes in Bo? is at least k/2λ−2

2
.

Let s = (o, σ) be an element of Σ chosen uniformly at random. Equivalently, we can say that
o is chosen uniformly at random from {+,−} and each permutation in σ is chosen uniformly
at random, all independently of one another. As we have seen above, under this measure,
denoting by p the number of boxes in Bo that are pregood for η,

P
[
p ≥ k

4λ
− 1

]
≥ P[o = o?] =

1

2
.

For each box B ∈ Bo which is pregood for η, the probability that B is good for sη is at
least λ−N . Hence, conditioning on p ≥ k

4l
− 1, the number of good boxes for sη is dominat-

ing a binomial random variable of parameters k
4l
− 1 and λ−N . The median of the latter is



NONCOOPERATIVE MODELS OF KINETICALLY CONSTRAINED LATTICE GASES 21

λ−N
(
k
4λ
− 1
)

= k0, hence

P
[
#good boxes for sη ≥ k0|p ≥

k

4λ
− 1

]
≥ 1

2
.

This concludes the proof. �

In order to bound the variance of f , we start by writing

Var f =
1

2

∑
η,η′∈Ωk

µ(η)µ(η′) (f(η)− f(η′))
2

=
1

2

∑
η,η′∈Ωk

µ(η)µ(η′)
1

|{s ∈ Σ : sη ∈ G}|2
∑
s∈Σ

1sη∈G
∑
s′∈Σ

1s′η′∈G (f(η)− f(η′))
2

≤ C

|Σ|2
∑
s,s′∈Σ

∑
η,η′

µ(η)µ(η′)1sη∈G1s′η′∈G (f(η)− f(η′))
2

=
C

|Σ|2
∑
s,s′∈Σ

∑
η,η′

µ(η)µ(η′)1sη∈G1s′η′∈G (f(η)− f(sη) + f(sη)− f(s′η′) + f(s′η′)− f(η′))
2

≤ C

|Σ|2
∑
s,s′∈Σ

∑
η,η′

µ(η)µ(η′)1sη∈G1s′η′∈G (f(η)− f(sη))2

+
C

|Σ|2
∑
s,s′∈Σ

∑
η,η′

µ(η)µ(η′)1sη∈G1s′η′∈G (f(sη)− f(s′η′))
2

+
C

|Σ|2
∑
s,s′∈Σ

∑
η,η′

µ(η)µ(η′)1sη∈G1s′η′∈G (f(s′η′)− f(η′))
2

≤ C

|Σ|
∑
s

∑
η

µ(η) (f(η)− f(sη))2 +
C

|Σ|2
∑
s,s′∈Σ

∑
η,η′

µ(η)µ(η′)1sη∈G1s′η′∈G (f(sη)− f(s′η′))
2

= I + II.

In order to finish the proof of the theorem, it is left to show that

I ≤ Cq−CL2DΛf, (5.2)

II ≤ Cq−CL2DΛf. (5.3)

Let us start with inequality (5.2).

Claim 5.13. For any s = (o, σ) ∈ Σ and z ∈ Λ there exists a T -step moveMs,z = ((ηt), (xt), (et))

satisfying:

(1) DomMs = {η ∈ Ωk : z is the first mobile cluster in η for the orientation o}.
(2) ηT (η) = sη for any η ∈ DomMs.
(3) T ≤ Cl3L.
(4) LossMs = 0.
(5) Each site x ∈ Λ is exchanged at most Cλ3 times. Moreover,

|{t such that xt(η) = x for some η ∈ DomMs,z}| ≤ Cλ3.



22 ASSAF SHAPIRA

Proof. Assume for simplicity o = +, the case o = − is analogous.
We start with the mobile cluster at z, and use the translation move (Definition 3.10) L−λ−z

times in order to move it to the box [L − 2λ + 1, L − λ]. The permutation σ[L−λ+1,L] can be
decomposed as a product of at most Cλ2 nearest neighbor transpositions (see, e.g., [18,
Section 5.2.2]). We apply them one by one, where at each step in order to exchange L−λ+x

with L − λ + x + 1 we move the cluster x times to the right using the translation move
(Definition 3.10), then exchange L − λ + x with L − λ + x + 1 using the exchange move
(Definition 3.12), and finally move the cluster x times to the left. Each transposition takes
2xTTr + TEx < Cl steps.

Once the permutation σ[L−λ+1,L] has been applied, we move the cluster λ steps to the left,
to the box [L − 3λ + 1, L − 2λ], and apply as before the permutation σ[L−2λ+1,L−λ] to the box
[L − 2λ + 1, L − λ]. Continue in the same manner until all boxes in B+ are rearranged, and
move the cluster back to z.

The verification of 2-5 is immediate. �

We now use the move Ms,z = ((ηs,zt ), (xs,zt ), (es,zt )) in order to bound the term I: for any
s ∈ Σ,∑

η

µ(η) (f(η)− f(sη))2 =
∑
η

µ(η)
∑
z∈Λ

1η∈DomMs,z (f(η)− f(sη))2

=
∑
η

µ(η)
∑
z∈Λ

1η∈DomMs,z

(
T−1∑
t=0

∇xs,zt ,xs,zt +es,zt
f(ηs,zt )

)2

≤ C
∑
η

µ(η)
∑
z∈Λ

T
∑
η′∈Ω

∑
x∈Λ

1η∈DomMs,z

T−1∑
t=0

1η′=ηs,zt 1x=xs,zt
cx,x+1(η′) (∇x,x+1f(η′))

2

≤ Cλ6L2
∑
η′

µ(η′)
∑
x∈Λ

cx,x+1(η′) (∇x,x+1f(η′))
2

= Cλ6L2Df.

Therefore
C

|Σ|
∑
s

∑
η

µ(η) (f(η)− f(sη))2 ≤ Cλ6L2Df.

For q small we may choose λ < 2N+1
q

and inequality (5.2) is satisfied. For q large the q and λ
dependence could be put it the constant C, proving inequality (5.2) for all q.

We move to inequality (5.3). Start by noting that, thanks to the bijectivity of s and s′, we
can change variables in the sum to obtain

II =
C

|Σ|2
∑
s,s′∈Σ

∑
η,η′

µ(η)µ(η′)1η∈G1η′∈G (f(η)− f(η′))
2

= C
∑
η,η′

µ(η)µ(η′)1η∈G1η′∈G (f(η)− f(η′))
2
.
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Since under the good event there are at least k0 sites x for which x+ C is empty,

II ≤ C
∑
η,η′

µ(η)µ(η′)1η∈G1η′∈G
1

k0

∑
z∈Λ

1z+C is empty for η
1

k0

∑
z′∈Λ

1z′+C is empty for η′ (f(η)− f(η′))
2

≤ C

k2
0

∑
η,η′

µ(η)µ(η′)
∑
z,z′

1z+C is empty for η1z′+C is empty for η′ (f(η)− f(η′))
2
.

For η such that z + C is empty, let Θzη be the outcome of z translations moves to the left.
That is, Θz is the permutation compatible with Tr−1(1 + C) ◦ · · · ◦ Tr−1(z + C). We can then
write II as

II ≤ C

k2
0

∑
η,η′

µ(η)µ(η′)
∑
z,z′

1η(z+C)=01η′(z′+C)=0 (f(η)− f(Θzη) + f(Θzη)− f(Θz′η
′) + f(Θz′η

′)− f(η′))
2

≤ C

k2
0

∑
η,η′

µ(η)µ(η′)
∑
z,z′

1η(z+C)=01η′(z′+C)=0 (f(η)− f(Θzη))2

+
C

k2
0

∑
η,η′

µ(η)µ(η′)
∑
z,z′

1η(z+C)=01η′(z′+C)=0 (f(Θzη)− f(Θz′η
′))

2

+
C

k2
0

∑
η,η′

µ(η)µ(η′)
∑
z,z′

1η(z+C)=01η′(z′+C)=0 (f(Θz′η
′)− f(η′))

2
.

≤ CL

k2
0

∑
η

µ(η)
∑
z

1η(z+C)=0 (f(η)− f(Θzη))2

+
CL2

k2
0

∑
η,η′

µ(η)µ(η′)1η(C)=01η′(C)=0 (f(η)− f(η′))
2

= III + IV.

The term III could be bounded using the T -step move M = ((ηt), (xt), (et)) resulted from the
composition of z translations to the left—it is not difficult to see that T ≤ CL, that it has 0

loss, and that each edge is flipped a bounded number of times. Therefore

III ≤ CL2

k2
0

∑
η

µ(η)
∑
z

1η(z+C)=0

∑
η′

∑
x

T−1∑
t=0

1η′=ηt1xt=xcx,x+1(η′) (∇x,x+1f(η′))
2

≤ CL3

k2
0

∑
η′

µ(η′)cx,x+1(η′)
∑
x

(∇x,x+1f(η′))
2 ≤ CL2

k2
0

LDf ≤ Cq−CLDf.

In order to estimate the last term IV, we need two ingredients—first, let Ωk−N be the
space of configurations on Λ \ C with k −N particles, endowed with the uniform measure µ.
Note that to any configuration η ∈ Ωk in which C is empty we can associate a configuration
η ∈ Ωk−N and vice versa. We may also define the function f : Ω → R, given by f(η) = f(η).
Then

IV =
CL2

k2
0

∣∣Ωk−N
∣∣2

|Ωk|2
∑
η,η′

µ(η)µ(η′)
(
f(η)− f(η′)

)2
.
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Note that the variance of f with respect to the measure µ is given by

Varµ f =
1

2

∑
η,η′

µ(η)µ(η′)
(
f(η)− f(η′)

)2
.

We can therefore bound IV using the relaxation time of the simple exclusion process on the
complete graph [7, 8], expressed in the following Poincaré inequality:

Varµ f ≤
1

L−N
∑
η

µ(η)
∑

y,z∈Λ\C

(
∇x,yf(η)

)2
.

Thus

IV ≤ CL

k2
0

∣∣Ωk−N
∣∣2

|Ωk|2
∑
η

µ(η)
∑

y,z∈Λ\C

(
∇y,zf(η)

)2

=
CL

k2
0

∣∣Ωk−N
∣∣

|Ωk|
∑
η

µ(η)1C is empty

∑
y,z∈Λ\C

(∇y,zf(η))2

≤ CL

k2
0

∑
η

µ(η)1C is empty

∑
y,z∈Λ\C

(∇y,zf(η))2 .

In order to conclude we need to construct a multistep move that exchanges x and y:

Claim 5.14. Fix y, z ∈ Λ\C. Then there exists a T -step move My,z = ((ηt), (xt), (et)) such that:

(1) DomMy,z = {η ∈ Ωk : C is empty}.
(2) My,z is compatible with the transposition of x and y.
(3) T ≤ CL.
(4) LossMy,z = 0.
(5) Each site x ∈ Λ is exchanged at most CλC times. Moreover,

|{t such that xt(η) = x for some η ∈ DomMs,z}| ≤ CλC .

Proof. If y and z are both larger than λ, the construction follows the exact same steps as that
of M in the proof of Lemma 4.2.

If y ∈ [λ], we perform the following maneuver—first, move the cluster 3λ steps to the
right. This move is compatible with some permutation σ. Since the order of the particles is
conserved in one dimension, σ(y) and σ(y + λ) are both in [3λ]. We can then exchange them
using the cluster at 3λ + C by the same construction as Lemma 4.2. When we now move the
cluster back to the left, the net result is a move compatible with transposing y and y + λ.

If z > λ we can apply the move constructed in the beginning, exchaning y + λ with z,
and finally wind back our manoeuvre to exchange y and y + λ. This leaves us with the
configuration ηy,z as we wanted.

If z is also in [l], we move the cluster 2λ steps to the right. Then use it to exchange σ(y)

and σ(z). Then move the cluster back 2λ steps to the left.
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If L is large enough all these maneuvers take negligible time, and we are left with the
bound T ≤ CL. �

We can now use this newly constructed move My,z = ((ηy,zt ), (xy,zt ), (ey,zt )) in order to finish
the bound on IV:

IV ≤ CL2

k2
0

∑
η

µ(η)1C is empty

∑
y,z∈Λ\C

T−1∑
t=0

∑
η′

∑
x∈Λ

1η′=ηy,zt 1x=xy,zt
cx,x+1(η′) (∇x,x+1f(η′))

2

=
CL4λC

k2
0

∑
η′

µ(η′)
∑
x∈Λ

cx,x+1(η′) (∇x,x+1f(η′))
2

=
CL4λC

k2
0

Df.

To sum it all up, assuming L is large enough and using the fact that k0 ≥ qCL,

II ≤ III + IV ≤ Cq−CLDf +
CL4λC

k2
0

Df ≤ Cq−C L2Df.

We have thus proven inequalities (5.2) and (5.3), concluding the proof of Theorem 5.6. �

6. Diffusion coefficient

In this section we consider the model on Zd, and study the diffusion coefficient D. This is a
symmetric matrix given by the following variational formula (see, e.g., [27, II.2.2]): for any
u ∈ Rd,

u ·Du =
1

2q(1− q)
inf
f
µ

 d∑
α=1

c0,eα

(
u · eα(η(0)− η(eα)) +

∑
x

∇0,eατxf

)2
 . (6.1)

In [11], convergence to a hydrodynamic limit of a variation of Example 2.1 is proven,
and the diffusion coefficient is found explicitly. This is done by a careful choice of the rates,
rendering the model gradient. Proving convergence to a hydrodynamic limit for Example 2.1
with the original rates, and identifying the diffusion coefficient, is a much more difficult task.
However, equation (6.1), together with the result of [11], allows us to deduce the positivity
of the diffusion coefficient, and even give an estimate accurate up to a factor (to be precise,
q ≤ D ≤ 2q).

In this section we prove the positivity of the diffusion coefficient in a much more general
setting, for all noncooperative models.

Theorem 6.1. Consider a noncooperative kinetically constrained lattice gas, and let D be the
associated diffusion coefficient (given in equation (6.1)). Then D is positive definite, that is,
u ·Du is strictly positive for any u ∈ Rd.

Remark 6.2. The proof of Theorem (6.1) also provides bounds on the diffusion coefficient,
and in particular shows that it could decay at most polynomially fast as q tends to 0. This
power law behavior is characteristic of noncooperative models, while cooperative models are
expected to show faster decay (see e.g. [25]).
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6.1. Proof.

6.1.1. Comparison argument. We will see here how to bound the diffusion coefficient using
multistep moves that compare our model to an auxiliary dynamics. For this purpose, consider
the dynamics defined by a generator

Lauxf =
∑
x∼y

caux
x,y (η)∇x,yf(η), (6.2)

and assume:

(1) The rates caux
x,y (η) do not depend on η(x), η(y). This guarantees that the dynamics is

reversible with respect to µ.
(2) The model is translation invariant.
(3) The rates are bounded from above by caux

max.

In order to compare the two models, we need to be able to perform the exchanges of the
auxiliary model using the original dynamics. This will be done using a multistep move:

Hypothesis 6.3. For any α ∈ {1, . . . , d} there exists a TAux-step move Auxα such that:

(1) Dom(Auxα) =
{
η ∈ Ω : caux

0,eα(η) 6= 0
}

,
(2) The move is compatible with the permutation exchanging 0 and eα.
(3) xt ∈ Λ for all t, where Λ is a fixed set.

Lemma 6.4. Consider the auxiliary model (6.2), and let Daux be its diffusion coefficient. If
Hypothesis (6.3) is satisfied, then for any u ∈ Rd

u ·Dauxu ≤ dT 2
Aux2

Loss(Aux)caux
max |Λ| u ·Du.

Proof. Fix a local function f : Ω→ R. We need to show that

d∑
α=1

µ

caux
0,eα

(
u · eα(η(0)− η(eα)) +

∑
x

∇0,eατxf

)2


≤ dT 2
Aux2

Loss(Aux)caux
max |Λ|

d∑
α=1

µ

c0,eα

(
u · eα(η(0)− η(eα)) +

∑
x

∇0,eατxf

)2
 .

Fix α, and denote Auxα = ((ηt), (xt), (et)). Then, for η ∈ Dom(Auxα) we can write

u · eα (η(0)− η(eα)) =
T−1∑
t=0

u · et (ηt(xt)− ηt(xt + et)) ,

∇0,eατxf =
T−1∑
t=0

∇xt,xt+et τxf(ηt).

Using these equalities,
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µ

caux
0,eα

(
u · eα(η(0)− η(eα)) +

∑
x

∇0,eατxf

)2


= µ

caux
0,eα

(
T∑
t=0

u · et (ηt(xt)− ηt(xt + et)) +
∑
x

T∑
t=0

∇xt,xt+et τxf

)2


≤ TAuxµ

caux
0,eα

T∑
t=0

(
u · et (ηt(xt)− ηt(xt + et)) +

∑
x

τxt∇0,etτ−xt τxf

)2


= TAuxµ

caux
0,eα

T∑
t=0

cxt,xt+et(ηt)

(
u · etτxt (ηt(0)− ηt(et)) + τxt

∑
x

∇0,etτxf

)2


= TAux

∑
η

µ(η)caux
0,eα

T∑
t=0

∑
z∈Λ

1z=xt

∑
η′

1η′=τzηt

∑
α′

1eα′=etc0,eα′
(η′)

×

(
u · eα′ (η′(0)− η′(eα′)) +

∑
x

∇0,eα′
τxf(η′)

)2

= T 2
Aux2

Loss(Aux)caux
max |Λ|

∑
η′

µ(η′)c0,eα′
(η′)

∑
α′

(
u · eα′ (η′(0)− η′(eα′)) +

∑
x

∇0,eα′
τxf(η′)

)2

= T 2
Aux2

Loss(Aux)caux
max |Λ|

d∑
α′=1

µ

c0,eα′

(
u · eα′ (η(0)− η(eα′)) +

∑
x

∇0,eα′
τxf

)2
 .

�

6.1.2. The auxiliary model. We now define an auxiliary model that will satisfy Hypothesis
6.3. In order to do that, fix d finite sets of sites, Aα =

{
xα1 , . . . , x

α
nα

}
for α ∈ {1, . . . , d}. We

order xα1 , . . . , x
α
nα from right to left according to their α coordinate, so that xαi · eα ≥ xαj · eα if

i ≤ j. We also define the sets

Aαi =
{
xαj + eα , 1 ≤ j ≤ i

}
∪
{
xαj , i+ 1 ≤ j ≤ nα

}
for i ∈ {0, . . . , nα}, so that Aα0 = Aα, and Aαi+1 is obtained from Aαi by moving xαi+1 one step
in the direction eα. Note that thanks to the ordering we have chosen, the new site xαi + eα

does not belong to Aαi , so that |Aαi | = nα for all i, and Aαnα = Aα + eα.
We will now define a Markov process on Ω with the aid of these sets. The idea would be to

allow empty copies of Aα to move in the direction ±eα, vacancy by vacancy, by changing at
each step Aαi to Aαi±1. More precisely, for each α and each i ∈ {0, . . . , nα − 1}, we identify all
translations of Aαi of the form x+Aαi which are empty for η. Then, with rate 1, we exchange
sites x+xαi+1 and x+xαi+1 +eα. In addition, for each α and each i ∈ {1, . . . , nα}, we identify all
translations of Aαi of the form x+Aαi which are empty for η. Then, with rate 1, we exchange
sites x+xαi and x+xαi +eα. This could be described using the following infinitesimal generator
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operating on a local function f :

Lauxf =
d∑

α=1

nα−1∑
i=0

∑
x∈Zd

1x+Aαi are empty∇x+xαi+1,x+xαi+1+eαf(η) (6.3)

+
d∑

α=1

nα∑
i=1

∑
x∈Zd

1x+Aαi are empty∇x+xαi ,x+xαi +eαf(η).

We will refer to the transition described in the first sum as forward transitions, and to the
ones in the second sum as backward transitions. That is, a forward transition occurs when an
empty site x is exchanged with an occupied neighbor x+eα, and a backward transition occurs
when an empty site y is exchanged with an occupied neighbor y − eα. Note that a forward
transition from x to x + eα is only possible when for some x̃ ∈ Z2 and i ∈ {0, . . . , nα − 1},
x̃+Aαi is empty and x = x̃+xαi+1. In other words, we need x−xαi+1 +Aαi to be empty for some
i ∈ {0, . . . , nα−1}. Similarly, a backward transition from y to y− eα requires y− eα−xαi +Aαi
to be empty for some i ∈ {1, . . . , nα}.

Observation 6.5. The auxiliary dynamics (6.3) is reversible with respect to the equilibrium
measure µ, for any value of the parameter q.

Proof. This is a consequence of the fact that for any η ∈ Ω and any edge x ∼ y of Z2, the rate
at which η changes to ηx,y is the same as the rate at which ηx,y changes to η—without loss of
generality assume η(x) = 1 − η(y) = 0 and y = x + eα. Then the rate of exchanging x and y
for η is given by the number of sets Aαi , i ∈ {0, . . . , nα − 1}, such that x− xi+1 +Aαi is empty
for η. On the other hand, the rate of exchanging x and y for ηx,y is given by the number of
sets Aαi , i ∈ {1, . . . , nα}, such that y − eα − xi + Aαi is empty for ηx,y. The latter could be
written as

# {i ∈ {1, . . . , nα} : y − eα − xi +Aαi is empty for ηx,y}

= #
{
i ∈ {0, . . . , nα − 1} : x− xi+1 +Aαi+1 is empty for ηx,y

}
= # {i ∈ {0, . . . , nα − 1} : x− xi+1 +Aαi is empty for η} ,

which conclude the proof. �

The last observation shows that Laux could be put in the form (6.2), where the rates caux
x,y

are bounded by nα.
The key property of this model is that the total current vanishes for any configuration:

Observation 6.6. Consider the auxiliary dynamics (6.3) on the torus Zd/LZd, for some fixed
(large) L. Then, for any η ∈ Ω, the total current is 0. That is,∑

x∼y

caux
x,y (x− y) (η(x)− η(y)) = 0.
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Proof. Fix α ∈ {1, . . . , d}. We show that the total current in the α direction is 0. The nega-
tive current (particles moving in the direction −eα) is given by forward transitions, and the
positive current by backward transitions. We need to prove that the two cancel out.

Each empty translation of Aαi contributes a forward transition of rate 1, unless we try to
move the vacancy to an already empty site. Hence the rate of forward transitions is given by

nα−1∑
i=0

∑
x∈Zd

1x+Aαi are empty −
nα−1∑
i=0

∑
x∈Zd

1x+Aαi are empty1x+xαi+1+eα is empty

=
nα−1∑
i=1

∑
x∈Zd

1x+Aαi are empty +
∑
x∈Zd

1x+Aα0 are empty −
nα−1∑
i=0

∑
x∈Zd

1x+Aαi+1 are empty1x+xαi+1 is empty

=
nα−1∑
i=1

∑
x∈Zd

1x+Aαi are empty +
∑
x∈Zd

1x+Aαnα are empty −
nα∑
i=1

∑
x∈Zd

1x+Aαi are empty1x+xαi is empty

=
nα∑
i=1

∑
x∈Zd

1x+Aαi are empty −
nα∑
i=1

∑
x∈Zd

1x+Aαi are empty1x+xαi is empty.

We recognize the last line as the rate of backward transitions, which finishes the proof. �

The zero current property, as explained in [27, II.2.4], makes the contribution of the
current-current correlation to the diffusion coefficient vanish. This allows us to calculate
explicitly the diffusion coefficient.

Lemma 6.7. Let Daux be the diffusion coefficient associated to the auxiliary dynamics (6.3).
Then for any u ∈ Rd

u ·Dauxu =
d∑

α=1

(u · eα)2 µ [c0,eα ] ≥ Cqn ‖u‖2 ,

where n = maxα nα.

Proof. The inequality follows directly from the definition of the model, so we are left with
showing the equality. [27, II.2.4] explains how it could be derived from the Green-Kubo
formula [27, II, equation (2.27)], for completeness we will prove it explicitly from the varia-
tional characterization (6.1).

Fix a local function f , and L large enough (depending on the support of f), so that
∑

x∈Zd

in equation (6.1) could be replaced by
∑

x∈Zd/LZd. Then

µ

 d∑
α=1

caux
0,eα

(
u · eα(η(0)− η(eα)) +

∑
x

∇0,eατxf

)2


=
d∑

α=1

µ
[
caux

0,eα (u · eα(η(0)− η(eα)))2]+ 2
d∑

α=1

µ

[
caux

0,eα u · eα(η(0)− η(eα))
∑
x

∇0,eατxf

]
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+
d∑

α=1

µ

caux
0,eα

(∑
x

∇0,eατxf

)2


≥
d∑

α=1

µ
[
caux

0,eα (u · eα(η(0)− η(eα)))2]+ 2
d∑

α=1

u · eα
∑
x

µ
[
caux

0,eα (η(0)− η(eα))∇0,eατxf
]
.

Since µ is invariant under the map η 7→ η0,eα and caux
0,eα(η) = caux

0,eα(η0,eα), we can write for any
function g

µ
[
caux

0,eα (η(0)− η(eα)) g(η)
]

=
1

2

(
µ
[
caux

0,eα (η(0)− η(eα)) g(η)
]

+ µ
[
caux

0,eα (η0,eα(0)− η0,eα(eα)) g(η0,eα)
])

= −1

2
µ
[
caux

0,eα (η(0)− η(eα))∇0,eαg(η)
]
.

Therefore, setting g = τxf and then using the translation invariance of µ we obtain∑
x

µ
[
caux

0,eα (η(0)− η(eα))∇0,eατxf
]

= −2
∑
x

µ
[
caux

0,eα (η(0)− η(eα)) τxf
]

= −2
∑
x

µ
[
caux
x,x+eα (η(x)− η(x+ eα)) f

]
= −2µ

[(∑
x

caux
x,x+eα (η(x)− η(x+ eα))

)
f

]
.

The last term is 0 by Observation (6.6), proving that

u ·Dauxu ≥ 1

2q(1− q)
µ

[
d∑

α=1

caux
0,eα (u · eα(η(0)− η(eα)))2

]
.

Hence, the infimum in equation (6.1) is attained for constant f .
Finally, we use the product structure of µ and the fact that caux

0,eα does not depend on η(0)

and η(eα) to calculate this infimum explicitly:

u ·Dauxu =
1

2q(1− q)
µ

[
d∑

α=1

c0,eα (u · eα(η(0)− η(eα)))2

]

=
1

2q(1− q)

d∑
α=1

(u · eα)2µ [c0,eα ]
[
(η(0)− η(eα))2]

=
d∑

α=1

(u · eα)2µ [c0,eα ] . �

6.1.3. The multistep move. As a corollary of lemmas 6.4 and 6.7, if we assume that for any
α there exists Aα of size nα ≤ n such that the auxiliary model defined in (6.3) satisfies
Hypothesis (6.3), then

u ·Du ≥ Cqn ‖u‖2

for any u ∈ Rd.
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Example 6.8. In Example 2.1, we may take A0 = {1, 2} so A1 = {1, 3} and A2 = {2, 3}. Then
the multistep Aux could be chosen trivially as the 1-step move exchanging the corresponding
sites.

Similarly, in Example 2.1, we take A1 = {e1, 2e1} and A2 = {e2, 2e2}, and verify that we
may choose the trivial 1-step moves.

In these two examples we know that by modifying the rates (without changing the con-
strained and unconstrained transitions) as in [11] we obtain a gradient model (which is, in
fact, the auxiliary model we defined above). That is, equation (6.1) could be used directly,
without passing through the comparison argument. This is expressed in the fact that our
multistep move is in fact a 1-step move.

In order to prove Theorem 6.1 all that is left is to construct Aα and the Auxα move.
Consider a mobile cluster C, and l such that C ∈ [l − 1]d. Choosing, for any α, the set
Aα = C ∪ (leα + C) (with nα = 2 |C|) will suffice. In order to show that, we need to construct
the Auxα move.

Let η ∈ Dom Auxα, i.e., caux
0,eα > 0. By reversibility we may assume that this is a forward

transition, so η(0) = 1− η(eα) = 0, and there exists i ∈ {0, . . . , nα − 1} such that −xi+1 +Aαi
is empty. We consider two cases:

Case 1. i ∈ {0, . . . , |C| − 1}. Then −xi+1 + C = −xi+1 + {x|C|+1, . . . , xnα} ⊂ Aαi . Moreover,
neither 0 nor eα are contained in −xi+1 + C since xi+1 ∈ leα + [l − 1]d. We may
therefore apply translation and exchange moves using the mobile cluster −xi+1 +

eα + leα + C in order to exchange 0 and eα.
Case 2. i ∈ {|C| , . . . , nα}. Then −xi+1 + eα + leα + C = −xi+1 + eα + {x1, . . . , x|C|} ⊂ Aαi . As

before, neither 0 nor eα are contained in −xi+1 + eα + leα + C since xi+1 ∈ [l − 1]d.
We may therefore apply translation and exchange moves using the mobile cluster
−xi+1 + eα + leα + C in order to exchange 0 and eα.

Hypothesis 6.3 is thus satisfied, concluding the proof of Theorem 6.1 by lemmas 6.4 and
6.7. �

Remark 6.9. While the construction above gives a polynomial bound for all noncooperative
models, in specific cases it might not be optimal. In Example 2.2, the mobile cluster has size
4, therefore the estimate we obtain is of the order q8. We have seen, however, that there is a
more efficient explicit choice of Aα which yields a much better bound, of the order q2.

7. Self-diffusion in d ≥ 2

In this section we study the self-diffusion coefficient Ds, which is a symmetric matrix given
by the following variational formula ([26], [27, II.6.2]): for any u ∈ Rd,
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u ·Dsu =
1

2
inf
f
µ0

∑
y∼x
x,y 6=0

cxy(∇xyf)2 +
∑
y∼0

c0y(1− η(y))
(
u · y + f(τ−yη

0y)− f(η)
)2

 . (7.1)

In dimension 1, due to the preservation of the order of particles, the self-diffusion coef-
ficient is 0 even with in an unconstrained setting (see, e.g., [27, II.6.4]), we will therefore
consider here only the higher dimensional case.

The positivity of the diffusion coefficient for examples 2.1 and 2.2 was proven in [2]. We
will see here that it is positive for any noncooperative models.

Theorem 7.1. Consider a noncooperative kinetically constrained lattice gas in dimension 2 or
higher, and let Ds be the associated self-diffusion coefficient (given in equation (7.1)). Then Ds

is positive definite, that is, u ·Dsu is strictly positive for any u ∈ Rd.

Remark 7.2. As for the diffusion coefficient, the proof of Theorem 7.1 also shows that the
rate at which Ds decays to 0 when q approaches 0 is at most polynomial, as expected.

7.1. Proof. The proof will follow the strategy of [27, II.6.3], also used in [2]. It consists
of comparing the model to as auxiliary model where the tracer motion could be more easily
tracked. The auxiliary model we will choose, however, does not fall under the framework
of equation (7.1)—First, the transitions are not single particle jumps, but a simultaneous
rearrangement of several particles. Moreover, these transitions are not homogeneous; more
precisely, the allowed transitions and their rates depend on the position as seen from the
tracer.

We start by generalizing equation (7.1) in a setting which will cover our auxiliary model.
Consider a dynamics on the space of configuration Ω with additional information on the
location of the tracer z ∈ Zd. Fix a countable set Σ of permutations of the sites, and assume
that they all have finite range. This means that, for some fixed R, any permutation σ ∈ Σ fixes
the sites outside x+[−R,R]d, where x ∈ Zd may depend on σ. Then, for each σ ∈ Σ, we apply
σ with rate ĉσ, relative to the tracer position z. That is, the configuration η becomes τzστ−zη
and the tracer moves to τzστ−z(z) = z + σ(0), with rate ĉσ(τ−zη). It is important to note that
in the new configuration, if the old tracer position is occupied then so is the new one. This
process can be written using the infinitesimal generator operating on f : Zd × Ω→ R:

L̂f(z, η) =
∑
σ∈Σ

ĉσ(τ−zη) (f(z + σ(0), τzστ−zη)− f(z, η)) , (7.2)

for a set of rates ĉσ : Ω→ [0,∞) defined for all any σ ∈ Σ.



NONCOOPERATIVE MODELS OF KINETICALLY CONSTRAINED LATTICE GASES 33

Remark 7.3. To obtain the original kinetically constrained model we take Σ to be the set of
nearest neighbor transpositions Σkc, and the rate

ĉkc
(x,y)(η) =


cx,y(τ−zη)1η(y)=0 if x = 0,

cx,y(τ−zη)1η(x)=0 if y = 0,

cx,y(τ−zη) otherwise.

The reason that we do not simply take ĉkc
(x,y)(η) = cx,y(τ−zη) is that, while in the original

dynamics exchanging two particles is equivalent to doing nothing, when following the tracer
we are not allowed to exchange it with a particle.

Then

L̂kcf(z, η) =
∑
x∼y
x,y 6=0

cx,y(τ−zη)
(
f(z, ηx+z,y+z)− f(z, η)

)
+
∑
0∼y

c0,y(τ−zη)
(
f(y, ηz,y+z)− f(z, η)

)
=

∑
x∼y
x,y 6=z

cx,y(η) (f(z, ηx,y)− f(z, η)) +
∑
z∼y

cz,y(η) (f(y, ηz,y)− f(z, η)) ,

which is indeed the generator of the dynamics (2.1) together with a tracer.

The variational formula (7.1) could be generalized to the setting of (7.2):

Lemma 7.4. Consider the dynamics (7.2). Assume that, ignoring the tracer, it is reversible with
respect to a probability measure ν on Ω (i.e., L̂ is self adjoint operating on functions that do
not depend on z). Let ν0 be the measure ν, conditioned on having a particle at the origin, i.e.,
ν0(ζ ∈ ·) = ν(ζ ∈ ·|ζ(0) = 1). Then for any u ∈ Rd,

u · D̂su =
1

2
inf
f

{∑
σ∈Σ

ν0

[
ĉσ(ζ)

(
u · σ(0) + f(τ−σ(0)σζ)− f(ζ)

)2
]}

,

where D̂s is the associated self-diffusion coefficient and the infimum is taken over all local func-
tions on Ω0 = {ζ ∈ Ω : ζ(0) = 1}.

Remark 7.5. From the last lemma we can reconstruct equation (7.1): as in Remark 7.3,∑
σ∈Σ

ν0

[
ĉkc
σ (ζ)

(
f(τ−σ(0)σζ)− f(ζ)− u · σ(0)

)2
]

=
∑
x∼y
x,y 6=0

ν0

[
cx,y(ζ) (f(ζx,y)− f(ζ))2]+

∑
y∼0

ν0

[
c0,y(ζ)(1− η(y))

(
u · y + f(τ−yζ

0,y)− f(ζ)
)2
]
.

Proof. The proof follows the exact same argument as [26, 27]. For completeness we present
here the main steps.

Consider the process described above, with ηt and zt the configuration and tracer position
at time t. Define ζt = τ−zηt, so the joint process (ζt, zt) is Markovian with generator operating
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on f : Ω0 × Zd → R as

Lf(ζ, z) =
∑
σ∈Σ

ĉσ(ζ)
(
f(z + σ(0), τ−σ(0)σζ)− f(z, ζ)

)
.

Fix g(z, ζ) = u · z, and let

ju(ζ) = Lg(z, ζ) =
∑
σ∈Σ

ĉσ(ζ)u · σ(0).

Then

u · zt −
∫ t

0

ju(ζs) d s = Mt

is a martingale with stationary increments and quadratic variation

E
(
M2

t

)
= t
∑
σ∈Σ

(u · σ(0))2 ν0 (ĉσ(ζ)) .

Here, and in the rest of the proof, E(·) refers to expectation related to the process, starting
from a configuration η drawn according to ν0 and a tracer at the origin.

We obtain

E
[
(u · zt)2

]
= t
∑
σ∈Σ

(u · σ(0))2 ν0 (ĉσ)−
∫ t

0

∫ t

0

E [ju(ζs)ju(ζs′)] d s d s′ + E
[
u · zt

∫ t

0

ju(ζs) d s

]
.

By reversibility and translation invariance, the process (−zt−s, ζt−s)s∈[0,t] has the same law as
(zs, ζs)s∈[0,t] (under the initial condition z = 0 and ζ draws from ν0). Therefore, the last term
in the equation above vanishes, leaving us with

u · D̂su =
1

2t
lim
t→∞

E
[
(u · zt)2

]
=

1

2

∑
σ∈Σ

(u · σ(0))2 ν0 (ĉσ)−
∫ ∞

0

ν0

[
jue

tLju

]
d t.

Note that the last expression contains only functions of the configuration ζ, without looking
at the tracer position z. The process (ζt)

∞
t=0 is Markovian and reversible with respect to ν0;

therefore, with some abuse of notation, we will consider from now on L as the generator of
this projected process, operating on functions on Ω0.

We may now write

−
∞∫

0

ν0

[
jue

tLju d t
]

= ν0

[
juL

−1
ju

]
= inf

f

{
−2ν0(juf)− ν0(fLf)

}
.

In order to calculate the first term in the infimum we use the detailed balance equation.
For every σ, defining σ′ = τ−σ(0)σ

−1τσ(0) (so that applying σ and then σ′ brings us back to the
original configuration),

ν0 [ĉσ(ζ)f(ζ)] = ν0

[
ĉσ′(ζ)f(τ−σ′(0)σ

′ζ)
]
.
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Hence, using σ′(0) = −σ(0),

−2ν0 [juf ] = −2
∑
σ∈Σ

u · σ(0) ν0 [ĉσ(ζ)f(ζ)]

=
∑
σ∈Σ

u · σ(0) ν0

[
ĉσ(ζ)

(
f(τ−σ(0)σζ)− f(ζ)

)]
.

The second term in the infimum is given by the Dirichlet form

−ν0(fLf) =
1

2

∑
σ∈Σ

ν0

[
ĉσ(ζ)

(
f(τ−σ(0)σζ)− f(ζ)

)2
]
.

Summing all up,

1

2
inf
f

{∑
σ∈Σ

ν0

[
ĉσ(ζ)

(
u · σ(0) + f(τ−σ(0)σζ)− f(ζ)

)2
]}

=
1

2

∑
σ

(u · σ(0))2ν0(ĉσ) + inf
f

{
−ν0(fLf)− 2ν0(juf)

}
=

1

2

∑
σ

(u · σ(0))2ν0(ĉσ)−
∞∫

0

ν0

[
jue

tLju d t
]

= u · D̂su. �

7.1.1. Comparison argument. As in the case of the diffusion coefficient, we will see that an
appropriate move could help us compare different dynamics.

Consider a model as in equation (7.2), satisfying the following conditions:

(1) For any σ ∈ Σ, the configuration σ′ = τ−σ(0)σ
−1τσ(0) is also in Σ, and ĉσ = ĉσ′. This is

equivalent to reversibility with respect to the equilibrium measure µ (for any q).
(2) ĉσ ≤ 1 for any σ ∈ Σ.

The comparison argument will be based on multistep moves, requiring us to follow the tracer
position throughout the move.

Definition 7.6. Fix a T -step move M = ((ηt), (xt), (et)), and assume that for any η ∈ Dom(M)

some given site z0 is occupied, i.e., η(z0) = 1. Then the tracer position associated with M

starting at z0 is a sequence of sites (zt)
T
t=0 giving at each step t the position of the particle

originally at z0:

zt+1 =


xt + et if zt = xt and ηt(xt + et) = 0,

xt if zt = xt + et and ηt(xt) = 0,

zt otherwise.

In order to compare the auxiliary model with our kinetically constrained lattice gas, we
must have an appropriate multistep move:

Hypothesis 7.7. For any σ ∈ Σ and z0 ∈ Zd, there is a T -step move Mz0,σ = ((ηt), (xt), (et))

such that:
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(1) DomM = {η ∈ Ω : η(z0) = 1 and ĉσ(τ−z0η) > 0}.
(2) M is compatible with the permutation τz0στ−z0.
(3) In all transitions involving the tracer, the site it jumps to must be empty. More pre-

cisely, denote zt the tracer position associated with M starting from z0. Then, for all
t, if xt = zt then ηt(xt + et) = 0 and if xt + et = zt then ηt(xt) = 0.

(4) For any z0, t, η′, x′, e′ and z′,

|{σ ∈ Σ : ηt = η′, xt = x′, et = e′, zt = z′}| ≤ C.

We note that by translation invariance of the kinetically constrained lattice gas, it suffices to
construct Mz0,σ for a specific choice of z0 to guarantee its existence for all z0.

Lemma 7.8. Consider an auxiliary model as in (7.2), reversible with respect to µ and with rates
bounded by 1. Assume that Hypothesis 7.7 holds. Then for all u ∈ Rd,

u · D̂su ≤ C u ·Dsu,

where Ds and D̂s are the self diffusion coefficients associated with the kinetically constrained
lattice gas and the auxiliary model respectively.

Proof. Fix z0 ∈ Zd and σ ∈ Σ, and consider the move Mz0,σ = ((ηt), (xt), (et)) given in Hypoth-
esis 7.7. Let zt be the associated tracer position starting at z0. Fix η ∈ DomMz0,σ, and set
ζ = τ−z0η, ζt = τ−zηt and σt = (xt − zt, xt − zt + et) for all t. Note first that

u · σ(0) + f(τ−σ(0)σζ)− f(ζ) = u · (zT − z0) + f(ζT )− f(ζ0)

=
T−1∑
t=0

u · (zt+1 − zt) + f(ζt+1)− f(ζt).

Also,

zt+1 = zt + σt(0),

ζt+1 = τ−σt(0)σtζt.

Recall remarks 7.3 and 7.5. Setting z0 = 0 (and hence ζ = η),

∑
σ∈Σ

µ0

ĉσ(ζ)

(
T−1∑
t=0

u · (zt+1 − zt) + f(ζt+1)− f(ζt)

)2


≤ T
∑
σ∈Σ

µ0

[
ĉσ(ζ)

T−1∑
t=0

(
u · σt(0) + f(τ−σt(0)σtζt)− f(ζt)

)2

]

≤ CT
∑

z∈[−R,R]d

T−1∑
t=0

µ0

 ∑
σ′∈Σkc

1z′=zt1σ′=((xt−z′,xt−z′+et))ĉ
kc
σ′

(
u · σ′(0) + f(τ−σ′(0)σ

′ζ ′)− f(ζ ′)
)2


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≤ CT 2Rdµ0

 ∑
σ′∈Σkc

ĉkc
σ′

(
u · σ′(0) + f(τ−σ′(0)σ

′ζ ′)− f(ζ ′)
)2

 .
This concludes the proof by Lemma 7.4. �

7.1.2. The auxiliary model. Fix some finite set Ĉ ⊂ Zd \ {0}, and d permutations σ1, . . . , σd

with finite range. Assume that σi(0) = ei and that σi(Ĉ) = ei + Ĉ. For all i ∈ [d] set

σ−i = τ−σi(0)σ
−1
i τσi(0),

so in particular
σ−i(0) = −ei, σ−i(Ĉ) = −ei + Ĉ.

We then define the auxiliary model as in equation (7.2), with Σ = {σ±1, . . . , σ±d} and
ĉσ(η) = 1Ĉ is empty for all σ ∈ Σ. It is indeed reversible with respect to µ, and all rates are
bounded by 1 (as required by Lemma 6.4).

Lemma 7.9. Consider the auxiliary model defined above. Then for all u ∈ Rd

u · D̂su =
1

2
q|Ĉ| ‖u‖2 .

Proof. Start the dynamics with a configuration η0 drawn from µ0 and tracer at the origin.
Assume Ĉ is empty for η0. Then the entire cluster Ĉ ∪ {0} performs a simple random walk,

independently of the initial configuration. This is because initially all rates are 1, and in each
transition the tracer moves together with Ĉ, meaning that all rates remain 1.

On the other hand, if Ĉ is not empty initially, then the configuration is blocked, and the
tracer remain at the origin forever. Hence, denoting the tracer position at time t by zt,

u · D̂su = lim
t→∞

1

2t
E
(
(u · zt)2

)
= lim

t→∞

1

2t
E
(

(u · zt)21Ĉ is empty for η0

)
=

1

2
‖u‖2 µ(Ĉ is empty for η0). �

7.1.3. The multistep move. In this section we construct the multistep moves allowing us to
move the tracer together with an empty cluster Ĉ.

Fix a mobile cluster C and l > 0 such that the translation and exchange moves exist. We
define

Ĉ = {−e1} ∪ ((l + 2)e1 + C) .

Claim 7.10. There exists a T -step move Hop = ((ηt), (xt), (et)), which we call the vacancy
hopping move, such that:

(1) Dom Hop =
{
η : η(0) = 1 and Ĉ is empty

}
.

(2) Hop is a deterministic move, compatible with the cyclic permutation σH = (e1, e1 +

e2, e2,−e1 + e2,−e1).
(3) For all t, at least one of the two sites xt or xt + et must be empty.
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Proof. We will construct Hop as a composition of several moves. First, we use translation
moves in order to bring the mobile cluster to −e1 − le2 + C:

M1 = Tr2(−(l + 1)e2 − e1 + C) ◦ Tr−1(−(l + 1)e2 + C) ◦ · · · ◦ Tr−1(−(l + 1)e2 + (l + 2)e1 + C)

◦ Tr−2(−le2 + (l + 2)e1 + C) ◦ · · · ◦ Tr−2((l + 2)e1 + C).

We emphasize that, for each of these translation Tr(x+ C), the sites −e1,−e1 + e2 are outside
x + [−l, l], hence untouched by the move. Also, the translation move is deterministic, and
since adding vacancies to a configuration in Dom Tr keeps it in Dom Tr, we may assume that
all transitions involve at least one empty site.

Next, we exchange −e1 and −e1 + e2:

M2 = Ex2(−e1 − le2 + C),

and move the mobile cluster back to (l + 2)e1 + C.

M3 = M−1
1 .

So far, we obtain a move M3 ◦M2 ◦M1 with the associated permutation (−e1,−e1 + e2).
Next, we move the cluster, exchange −e1 + e2 with e2 and the move it back:

M4 = Tr−1((l + 1)e1 + e2 + C) ◦ Tr−1((l + 2)e1 + e2 + C) ◦ Tr2((l + 2)e1 + C),

M5 = Ex−1(le1 + e2 + C),

M6 = M−1
4 .

This results in a move M6 ◦M5 ◦M4 associated to the permutation (−e1 + e2, e2).
In the same manner we construct a move M7 associated with (e2, e1 + e2) and a move M8

associated with (e1 + e2, e1).
We end up with the desired multistep move Hop = M8◦M7◦M6◦M5◦M4◦M3◦M2◦M1. �

Claim 7.11. There exists a permutation σ1 and a move Mσ1 such that:

(1) DomMσ1 =
{
η : η(0) = 1 and Ĉ is empty

}
.

(2) Mσ1 is deterministic, compatible with σ1.
(3) σ1(0) = e1 and σ1(Ĉ) = e1 + Ĉ.
(4) For all t, at least one of the two sites xt or xt + et must be empty.

Proof. The move Mσ1 is given by

Mσ1 = Tr1((l + 2)e1 + C) ◦ Tr1((l + 1)e1 + C) ◦ Ex−1((l + 1)e1 + C) ◦ Tr−1((l + 2)e1 + C) ◦ Hop.

�

So far, we constructed the permutation σ1 defining the auxiliary model, and the move
Mz0,σ1 required in Hypothesis 6.3 (for z0 = 0 hence for all z0). This gives us automatically
σ−1 = τ−e1σ

−1
1 τe1 , and the move Me1,σ−1 = M−1

0,σ1
, which provides Mz0,σ−1 for all z0.
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In order to propagate in other directions, we use the following claim:

Claim 7.12. For and α ∈ [1], there exists a permutation σα and a move Mσα such that:

(1) DomMσα =
{
η : η(0) = 1 and Ĉ is empty

}
.

(2) Mσα is deterministic, compatible with σα.
(3) σα(0) = eα and σα(Ĉ) = eα + Ĉ.
(4) For all t, at least one of the two sites xt or xt + et must be empty.

Proof. Claim 7.11 shows the case α = 1.
The construction for α 6= 1 is similar to the previous claims. Start by exchanging −e1 with
−eα (in the exact same manner as the move M6 ◦M5 ◦M4 ◦M3 ◦M2 ◦M1 in the proof of Claim
7.10). Then translate the mobile cluster from (l + 2)e1 + C to (l + 2)eα + C. This brings us
to the same setting as Claim 7.11, where the direction 1 is replaced by α. We may then use
the same construction in order to move {0,−eα}∪ ((l + 2)eα + C) one step in the direction eα.
Finally, move the mobile cluster back from (l+ 3)eα + C to (l+ 2)e1 + eα + C and the vacancy
at 0 to eα − e1. �

Theorem 7.1 then follows from Claim 7.12, Lemma 7.8, and Lemma 7.9. �

8. Questions

• The proofs given here show polynomial divergence of time scales as q tends to 0. Is it
possible to identify the exact exponent of this divergence?
• What is the qualitative behavior of the different quantities described here when changing
q? Are they continuous? Smooth? We expect them to be monotone (since decreasing q

should “slow down” the system), but the nonattractivity of the model makes it difficult to
prove.
• Variational formulas can also be used to approximate different quantities, and not just find

bounds—consider, for example, the diffusion coefficient D. We may define, for Λ ⊂ Zd,

u ·D(Λ)u =
1

2q(1− q)
min
f

µ

 d∑
α=1

c0,eα

(
u · eα(η(0)− η(eα)) +

∑
x

∇0,eατxf

)2
 ,

where the minimum is taken over functions f : {0, 1}Λ → R. Then D = limΛ→Zd D
(Λ).

[1] evaluated this minimum, obtaining (nonrigorously) an approximate expression for
D of the Kob-Andersen model, which is a cooperative kinetically constrained lattice gas. In
their case, as q tends to 0, larger and larger boxes Λ must be taken in order to have a good
approximation of D. We know that since any finite Λ gives D(Λ) polynomial in q, and for
the Kob-Andersen model the diffusion coefficient decays superpolynamially.

In noncooperative models, the decays is polynomial, so one may hope that a finite box Λ

could provide a good approximation of D for all q. For the model in Example 2.1 an empty
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Λ already gives the correct diffusion coefficient up to a factor 2. What happens in other
noncooperative models? Can we say that D/D(Λ) → 1 uniformly in q?
• Extend Theorem 5.6 to models satisfying Hypothesis 5.5 in all dimensions, or more gener-

ally to all noncooperative models.
• Given the positivity of the diffusion coefficient (Theorem 6.1), it is natural to conjecture

convergence to the hydrodynamic limit of all noncooperative kinetically constrained lattice
gases. Can we show it for models other than the one studied in [11]? Proving convergence
for nongradient models (e.g. the model in Example 2.1) is an interesting (and challenging)
problem.
• We expect the equilibrium fluctuations to converge to a Gaussian field (see, e.g., [27, II.2]),

with the diffusion coefficient studied in Section 6. Can this be proven?
• Studying the diffusivity of cooperative kinetically constrained models. Results analogous to

theorems 4.1, 6.1, and 7.1 have been shown for the Kob-Andersen model ([22, 25, 4, 9]).
To the author’s knowledge, other cooperative models have not been studied in the mathe-
matical literature. Can one understand ergodicity properties of cooperative models? Does
ergodicity always imply diffusivity? How do typical time scales diverge near criticality?
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