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Abstract
We discuss the relaxation time (inverse spectral gap) of the one dimensional O(N ) model,
for all N and with two types of boundary conditions. We see how its low temperature asymp-
totic behavior is affected by the topology. The combination of the space dimension, which
here is always 1, the boundary condition (free or periodic), and the spin state SN−1, deter-
mines the existence or absence of non-trivial homotopy classes in some discrete version.
Such non-trivial topology reflects in bottlenecks of the dynamics, creating metastable states
that the system exits at exponential times; while when only one homotopy class exists the
relaxation time depends polynomially on the temperature. We prove in the one dimensional
case that, indeed, the relaxation time is a proxy to the model’s topological properties via the
exponential/polynomial dependence on the temperature.

Keywords Relaxation times · Topological effects · Metastability · Classical spin models

1 Introduction

The investigation of the low-temperature behavior of classical spin systems with continuous
symmetry, such as the O(N ) model on a lattice, is a source of many fascinating questions in
equilibrium statistical mechanics [7, 17]. For example, in the two dimensional XY model, a
deep understanding of the interplay between the spin wave approximation and topological
aspects such as vortex formation poses significant mathematical challenges, see [5, 8, 9, 13,
15] for some classical works, and see e.g. [10, 16] for more recent studies. To delve deeper
into these questions, it is natural to study the Langevin dynamics associated to the O(N )

model, that is the reversible diffusion process with stationary distribution given by the O(N )
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Gibbs measure. In the mean-field case, a comprehensive analysis of the relaxation time, or
inverse spectral gap, of Langevin dynamics for the O(N ) model, has been achieved recently
in [2]. In particular, these results show that, when N ≥ 2, in sharp contrast with the case of
the Glauber dynamics for the Ising model (N = 1), the relaxation time of the mean field
O(N )model is at most linearly growing with the size of the system, at any fixed temperature.
It is widely believed that such bounds should continue to hold for short range models as well,
see e.g. [3]. In particular, it can be conjectured that for all lattice dimension d ≥ 2, the O(N )

model on a lattice box with side L , for all N ≥ 2, has relaxation time at most of order Ld

at any fixed temperature, regardless of the boundary conditions. However, even establishing
that relaxation times grow at most at a polynomial rate with L is a notoriously difficult open
problem.

As a much more modest objective, in this note, we explore the presence of significant
topological effects in the simpler one-dimensional setting. In a one-dimensional system, it
is well known that the relaxation time is of order 1 at any fixed temperature. However, it
was recently observed in [4] that in the one-dimensional XY model (N = 2), when periodic
boundary conditions are imposed, as the inverse temperature β grows logarithmically with
the size L of the chain, topologically induced metastable phases emerge, which correspond
to distinct global winding numbers of the spin chain. When β increases as log L , the free
energy barrier between these states also increases linearly with β, leading to hitting times that
are exponentially large in β. As we will see, this system exhibits relaxation times that grow
exponentially with β. This phenomenon is specific of the periodic chain, and cannot occur for
e.g. free boundary conditions. Indeed, it is a consequence of the fact that the global winding
number of a periodic XY chain is a topological invariant, and two distinct phases cannot
be connected by a homotopy, giving rise to a topological bottleneck. The main goal of this
paper is to show that these topological effects on the dynamics are not present when N ≥ 3.
The point is that when N ≥ 3, one can connect any two configurations of the spin chain by
a continuous deformation. In particular, by using a continuous version of the canonical path
method, we will show that, as a function of β, the relaxation time of the one-dimensional
O(N ) model with N ≥ 3 can grow at most polynomially in a periodic chain. We will also
note that the same holds true for O(N ) models, this time for any N ≥ 2, if one takes free
boundary conditions instead.

1.1 Model and Results

Given integers N ≥ 2, and L ≥ 2, the one-dimensional O(N ) model of size L , with free or
periodic boundary conditions is defined, respectively, by the Hamiltonians

H f
L(S) = −

L−1∑

i=1

Si · Si+1, Hper
L (S) = −

L∑

i=1

Si · Si+1. (1)

Here Si ∈ S
N−1 denotes the i-th spin, Si · Si+1 is the usual scalar product for vectors in RN ,

and we set SL+1 ≡ S1 to obtain periodic boundary conditions in Hper
L (S). We write ν for

Lebesgue’s measure on S
N−1 and let νL denote the corresponding product measure on the

space �L = (SN−1)L of the spin chain configurations. Thus, the free and periodic boundary
condition O(N ) Gibbs measure at inverse temperature β > 0 is given, respectively, by the
probability measures on �L defined as

μf
L,β(dS) = exp

(−βH f
L(S)

)

Z f
L,β

νL(dS), μ
per
L,β(dS) = exp

(−βHper
L (S)

)

Zper
L,β

νL(dS), (2)
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where the partition function is defined, respectively, by

Z f,per
L,β =

∫

�L

exp
(
−βH f,per

L (S)
)

νL(dS).

TheLangevin dynamics is defined as the reversible diffusion process on�L with infinitesimal
generator

Lf,per
L,β =

L∑

i=1

(
1

β
D2
i − (Di H

f,per
L ) · Di

)
, (3)

where Di denotes the gradient ∇SN−1 on the unit sphere acting on the i-th spin Si . The gen-
erator (3) defines a self-adjoint operator on L2(�L , μf

L,β) and L2(�L , μ
per
L,β), respectively.

For any smooth function f : �L → R, the associated Dirichlet form is given by

Df,per
L,β ( f , f ) = 1

β

L∑

i=1

∫

�L

‖Di f (S)‖2μf,per
L,β (dS), (4)

and ‖ · ‖ denotes the vector norm. The spectral gap is defined by the variational principle

gapf,perL,β = inf
f

Df,per
L,β ( f , f )

Varf,perL,β ( f )
, (5)

where Varf,perL,β ( f ) = μ
f,per
L,β ( f 2) − μ

f,per
L,β ( f )2 denotes the variance functional with respect

to μ
f,per
L,β and f ranges over all non-constant smooth functions on �L . The relaxation time is

defined as the inverse of the spectral gap

T f,per
rel (L, β) = 1

gapf,perL,β

. (6)

At any fixed β the one-dimensional nearest neighbor spin system satisfies exponential decay
of covariances uniformly in the boundary conditions [7]. Then it is not difficult to prove, see
e.g. [14], that the system has a uniformly positive spectral gap, that is there exists a constant
C(N , β) independent of L , such that

T f,per
rel (L, β) ≤ C(N , β). (7)

Here we are interested in detecting topologically induced slowdown effects on the relaxation
to equilibrium which could appear in the case where β grows with L . In particular, as shown
in [4], these phenomena do occur in the XY model (N = 2) in the case of periodic boundary
conditions, when β is at least of order log L .

We start by showing that in the case of free boundary conditions there is no topologically
induced slowdown, in the sense that the relaxation time is upper bounded as follows.

Theorem 1.1 (O(N ) model with free boundary) For any N ≥ 2, L ∈ N, and β ≥ 1,

T f
rel(L, β) ≤ C(N ) L2β(N+1)/2, (8)

where C(N ) depends only N. In particular, for each fixed N, it grows at most polynomially
in β.
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We note that, in light of the bound (7), the above estimate becomes relevant only when
β grows with L . In this case, if β is at least C log L for some large C , as we discuss in
Section 1.2 below, a diffusive scaling of the relaxation time should be expected, and thus
at least qualitatively, the bound in Theorem 1.1 should be tight. In the case of periodic
boundary conditions, in agreement with [4], we show the following bounds quantifying the
topologically induced slowdown for N = 2. We note that, while [4] discuss the transition
time between metastable states, we study the relaxation time (which is well-defined also in
the absence of metastability); and while they describe similar phenomena one can not be
directly deduced from the other.

Theorem 1.2 (XY model with periodic boundary) Let N = 2. For L ∈ N, and β ≥ 1,

T per
rel (L, β) ≤ Cβ3/2e2βL2, (9)

for some absolute constant C. Moreover, for any L ∈ N, there exists a constant c(L) depend-
ing on L such that for all β ≥ 1,

T per
rel (L, β) ≥ c(L)β e(2−C0L−1)β , (10)

where C0 is an absolute constant.

The lower bound (10) is based on a rather crude argument and provides no meaningful
L-dependance. However, as discussed in Section 3.2, the leading exponential term e2β in
(9)-(10) captures the correct metastable behavior associated to the energy barrier of size 2β
between states with winding number zero and states with non-zero winding number.We refer
to Remark 3.1 for the sketch of a finer energy-entropy argument providing quantitative L
dependance in the metastable regime β ≥ C log L .

Finally, we prove that there is no topologically induced slowdown for N ≥ 3.

Theorem 1.3 (O(N ) model on the cycle, N ≥ 3) For N ≥ 3, L ∈ N, and β ≥ 1,

T per
rel (L, β) ≤ C(L)β. (11)

Moreover, in the case of the Heisenberg model (N = 3), one can take C(L) = eCL log L for
some constant C not depending on L and β.

1.2 Discussion, Conjectures and Open Problems

We emphasize that these estimates are far from optimal and do not capture all features of
relaxation to equilibriumof the spin chain.However, they are sufficient to rule out the presence
of topological bottlenecks in the relaxation process for all N ≥ 2 in the case of free boundary
and for N ≥ 3 in the case of periodic boundary. Let us give some comments on our proofs.
Roughly speaking, forTheorem1.1weuse the fact that the spin chain has a product structure in
the case of free boundary conditions, when one considers the “increment” variables Si+1−Si .
This is achieved by a suitable change of variables that allows a convenient representation for
the Hamiltonian. In this setup, a simple tensorization argument applies and one obtains the
estimate (8) by changing back to the original spin variables. The explicit dependance on the
variable β in (8) is obtained by a quantitative bound on the spectral gap for a single increment
variable. The upper bound in (9) is obtained by reducing the problem to the free boundary
case via a perturbation argument. On the other hand, for the lower bound in (9) we use an
upper bound on the Cheeger constant. This is based on the choice of a suitable bottleneck
event that was already analysed in [4].
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The proof of Theorem 1.3 requires more work. We use a continuous version of the so-
called canonical path method, see e.g. [18] for a classical formulation in the discrete setting.
The main idea is to construct a path consisting of a continuous, energy decreasing transfor-
mation, which allows one to move any given configuration of L points on a sphere SN−1 to
a configuration where all points lie in a small neighbourhood of a pole of the sphere. Once
the system is confined to such a neighbourhood, convexity considerations allow us to con-
clude the desired statement. Checking that such a construction is possible, and controlling
the entropy associated to the contracting path requires some non-trivial analysis. Note that
this can only work in the case N ≥ 3, since for N = 2 it is prevented by the topological
obstruction discussed above.

Concerning dimension higher than one, in light of the above, it is natural to conjecture
that if one considers the O(N ) model on the d-dimensional torus (Z/LZ)d , then topological
bottlenecks are related to the homotopy structure. More precisely, one expects the relaxation
time to grow exponentially with β when there are some non-trivial homotopy classes of maps
from T

d → S
N−1.

Indeed, when β is large the angle between two neighboring spins is small, and the discrete
configuration of the spin system looks like a continuous field, i.e., a map from T

d to S
N−1.

With this inmind, the dynamics of the spin system corresponds to homotopy of the continuous
field, and if there are several homotopy classes, then moving from one to the other requires
the creation of a discontinuity. The energetic cost of this discontinuity creates the topological
bottleneck.

While this description provides a good intuition to explain the results in this paper, in a
more general setting we expect suchmetastability to depend also on the Riemannian structure
of SN−1 and not solely its topology. Consider for example an hourglass spin state, which has
the same topology as S2 but non-constant curvature. As in the O(3)model, the ground state is
when all spins point in the same direction. However, this system contains a metastable state,
where spins are placed, equally spaced, on the narrow part of the hourglass. This narrow
part looks like S

1, and the metastable states will correspond to non-zero winding around
it. In this example, the energetic cost is due to the continuous transformation and not the
creation of discontinuities. We therefore see that endowing the same topological sphere with
a Riemannian structure other than the standard one (i.e., the homogeneous metric induced
by the scalar product in R3) could change the metastability properties.

This example suggests that homotopy classes ofmaps do not provide sufficient information
to describe the metastability properties of the system. To remedy this, introduce the following
energy functional. For M, M ′ two compact Riemannian manifolds, and f : M → M ′, let
E( f ) be the energy of f :

E( f ) =
∫

M
‖Df (x)‖2f (x)dx, (12)

where ‖ ‖p is the norm on the tangent space of M ′ at p.
Extrema of the functional E , called harmonic maps, are well studiedmathematical objects,

see e.g. [6]. Loosely stated, our general conjecture is that if one considers a model on some
graph G with spin taking value in the manifold M ′, and if

• the graph G “approximates well” the manifold M (for example: the graph Laplacian on
G is close in some sense to the Laplacian on M),

• the Hamiltonian of themodel is a “approximate discrete version” of the energy functional
E . This is the generic behavior of nearest-neighbor attractive interaction near low energy
states.
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Then, the existence of metastable states is equivalent to the existence of non-trivial local
minimizers of E . Specializing to the spin O(N ) model, one obtains the next (more precise)
conjecture.

Conjecture 1.4 Let M be a compact Riemannian manifold, and define the energy functional
operating on f : M → S

N−1 as

E( f ) =
∫

M
‖Df (x)‖2dx, (13)

where the norm is taken with respect to the standard Riemannian metric on the sphere.
Consider the O(N ) model on a graph G discretizing M. Then the relaxation time of the
corresponding Langevin dynamics grows exponentially fast with β if and only if E has non-
trivial (i.e., non-constant) local minima.

In particular, for the case of Zd with free boundary conditions, there should be no such
bottlenecks, that is relaxation times growing polynomially as a function of β, for all N ≥ 2,
since here the homotopy group is always trivial and the harmonic mappings are all constant.
However, we leave it as an open problem to obtain quantitative bounds in dimension d > 1.

While we believe that for M = S
1 or M = (0, 1) our methods could be used in order to

prove this conjecture, higher dimensional manifold will require much finer analysis. This is
due to the underlying assumption, that the spin configuration can be approximated in the low
energy regime by a continuous function.

An interesting example to study would be the case N = 4, M = S
3: there are several

homotopy classes of continuous maps from S
3 to S3 (even countably many, by the Hurewicz

theorem), but the energy E has no non-trivial local minima [6], so our conjecture is that there
is no metastable behaviour in this case.

1.3 Scaling Limit in LowTemperature Heuristics

We conclude this introduction with a brief informal discussion of the behavior of the system
for extremely low temperature, that is when β is large as a function of L , that could serve
as a heuristic guide for a more precise analysis in this regime. For the sake of simplicity, we
discuss the problem only for the XY model (N = 2) and give only a brief comment on the
case N ≥ 3 afterwards. When N = 2 we may parametrize Si by a single angle Xi ∈ [−π, π]
and if β = β(L) is very large we may assume there is a well defined lift to R, so that our
variables are now Xi ∈ R, and the center of mass XL = 1

L

∑L
i=1 Xi satisfies the relation

dX(t) =
√
2

β
√
L
dB(t) , (14)

where B(t) is a standard brownian motion. To see this, observe that by definition (3), the
dynamics is given by the SDEs

dXi (t) = −∂Xi H(X) dt +
√
2

β
dBi (t) , i = 1, . . . , L (15)

where the Bi ’s are independent standard Brownian motions, and the interaction has the form

H(X) =
∑

i∼ j

hi j
(
Xi − X j

) =
∑

i∼ j

hi j
(
X j − Xi

)
,
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where the sum ranges over the edges of some finite graph, and hi j = h ji = cos(·). The graph
is the segment {1, . . . , L} in the case of free boundary conditions, and it is the L-cycle in
case of periodic boundary. Therefore,

∑

i

∂Xi H(X) =
∑

i

∑

j : i∼ j

h′
i j (Xi − X j ) = −

∑

i

∑

j : i∼ j

h′
i j (X j − Xi ) = 0.

In particular, (14) shows that the center of mass relaxes on a time scale proportional to L .
Clearly, the above holds in any dimension d ≥ 1, for the d-dimensional cube with side
L with free or periodic boundaries, provided L is replaced by Ld . This can be seen as the
starting point to establish volume order relaxation times estimates for the low temperatureXY
model. However, one has to keep in mind that this center of mass motion can be interpreted
as a meaningful mode of the system, namely the global phase, only when all spins point in
approximately the same direction. As noted in [4], for d = 1, the condition β � L suffices
to ensure that with large probability all spins are closely aligned, that is the winding number
is zero, and there is a well defined lift X as above. When β 
� L , one needs to consider the
sum of all spins, and of the corresponding Brownian motions in R2, as actual vectors, which
makes the analysis considerably more involved; see [2] for a treatment of the mean field case.

Beyond the center of mass discussed above, one can also consider a stochastic PDE
describing the continuum limit of the full configuration of the system. Consider the field
φ : S1 × R → S

1 defined by

φ(ξ, τ ) = 1√
L
X�Lξ/2π�(L2τ). (16)

When β is very large, we may approximate ∂Xi H(X) ≈ Xi − Xi−1 − (Xi+1 − Xi ) ≈
(2π)2L−3/2
φ(ξ, τ ), so, with t = L2τ one has L−1/2∂Xi H(X)dt ≈ 4π2
φ(ξ, τ )dτ .
Moreover, reasoning as in [11, Section 2],

L−1/2 dB�Lξ/2π�(t)
dt

≈ W (ξ, τ ) ,

where W is space-time white noise on S1 ×R. In conclusion, from (15), the field φ satisfies
the Edwards-Wilkinson equation, or stochastic heat equation

∂τφ(ξ, τ ) ≈ 4π2
φ(ξ, τ ) + √
2β−1W (ξ, τ ). (17)

We note that the continuum approximation discussed above should give a valid description
of the system, on suitable time scales, provided β grows at least logarithmically with L .
In particular, this suggests a diffusive time scale of order L2 for relaxation, up to polylog
corrections, when the system has free boundary conditions, as pointed out after Theorem 1.1.
After this diffusive time scale, the system will relax by pure diffusion of the global phase.
If we consider periodic boundary conditions, then the situation is different, since one has to
impose the condition that φ(2π, τ)−φ(0, τ ) = winding number, and thus the equation (17)
is valid onlywithin a given homotopy class, i.e. it describes the system for timesmuch smaller
than the metastable times TMS ≈ e2β−log(L) detected in [4], at which the XY chain changes
winding number. On the metastable time scale TMS the dynamics will involve a randomwalk
between the adjacent homotopy classes corresponding to ±1 jumps of the global winding
number.

The above heuristic analysis can be in principle repeated for any N ≥ 3, by working
with the local coordinates chosen to parametrize the sphere SN−1. One gets, independently
for each coordinate, a SDE for the center of mass and a stochastic heat equation as above.
However, because of the dependence on the choice of local coordinates on the manifold, the
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interpretation of these equations is no longer obvious in this case. We leave it as an open
question to identify the limiting process.

2 Free Boundary Conditions

In this section we prove Theorem 1.1. We start by choosing appropriate coordinates.

2.1 Coordinates

For N = 2, we parametrize the system using angles θ1, . . . , θL ∈ [0, 2π] and by setting

Si = ( cos(θ1 + · · · + θi ), sin(θ1 + · · · + θi )
)
.

The uniform measure on (S1)L is then the image of the uniform measure on [0, 2π]L by the
above mapping.

For N ≥ 3, a vector s ∈ S
N−1 can be parametrized as

s = s(θ, v) = cos(θ)e1 + sin(θ)v ,

(e1, . . . , eN ) is the canonical orthonormal basis of RN , θ ∈ [0, π], and v is a unit vector
in the orthogonal complement of e1. Then, sampling s uniformly on S

N−1 is equivalent to
sample v uniformly on {x : x ·e1 = 0, ‖x‖ = 1}, and θ proportionally to sin(θ)N−2. For θ, v

as before, denote Rv,θ the rotation matrix (in the standard basis) rotating the plane spanned
by v and e1 by an angle θ so that Rv,θe1 = cos(θ)e1 + sin(θ)v. In other words, Rv,θ is given
by

Rv,θ x = x + ((cos(θ) − 1)x · e1 − sin(θ)x · v
)
e1 + ( sin(θ)x · e1 + (cos(θ) − 1)x · v

)
v.

Let then vi , i = 1, . . . , L be a sequence of uniform random variables on {x : x · e1 =
0, ‖x‖ = 1}, let θi , i = 1, . . . , L be an sequence of random variables on [0, π] with density
proportional to sin(θi )N−2. Suppose vi , θi , i = 1, . . . , L forms an independent family. Set

Ri = Rvi ,θi , Si = R1 . . . Rie1.

The first ingredient we need is the next simple Lemma.

Lemma 2.1 The sequence Si , i = 1, . . . , L is an i.i.d. sequence of uniform random variables
on S

N−1.

Proof It is sufficient to check that for every realization of R1, . . . , Ri−1, Si is uniformly
distributed on SN−1. This follows directly from rotation invariance of the spherical measure
and the fact that Rie1 is uniform on SN−1. ��

The final ingredient we will need is a control over partial derivatives of Si with respect
to the angles θ j s and the vectors v j s. We note here that by ∂

∂v j
Si we mean the differential

with respect to v j when fixing all other variables; in local coordinates it is given by the

(N − 1) × (N − 1) Jacobian matrix, and we write
∥∥∥ ·
∥∥∥ for the associated operator norm.

Lemma 2.2 Let N ≥ 3. For every i, j ∈ {1, . . . , L},
∥∥∥

∂

∂θ j
Si
∥∥∥ ≤ 1,

∥∥∥
∂

∂v j
Si
∥∥∥ ≤ 4. (18)
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Proof If j > i , both quantities are 0 and there is nothing to prove. Otherwise,
∥∥∥

∂

∂θ j
Si
∥∥∥
2 =

∥∥∥
∂

∂θ j
R j x
∥∥∥
2 = (x · e1)2 + (x · v)2 ≤ 1.

where x = R j+1 . . . Rie1, and we used the fact that e1, v are orthogonal and of norm 1. Then,
for any x ∈ R

N and h of norm 1,

lim
ε↘0

1

ε
(Rv+εh,θ x − Rv,θ x) =
= − sin(θ)x · he1 + (cos(θ) − 1)x · hv + ( sin(θ)x · e1 + (cos(θ) − 1)x · v

)
h,

so that for h of norm 1 in the tangent space of {y : y · e1 = 0, ‖y‖ = 1} at v j , one has (as
e1, v j , h are orthogonal)

∥∥∥
∂

∂v j
Si (θ, v)

∥∥∥
2 =

∥∥∥
∂

∂v j
Rv j ,θ j x

∥∥∥
2 ≤ 14

where again x = R j+1 . . . Rie1. It follows that ‖∂Si/∂v j‖ ≤ √
14 ≤ 4. ��

The interest of those parametrizations lies in the following identity: the Hamiltonian in
(1) becomes

− H f
L(S(v, θ)) =

L−1∑

i=1

(R1 . . . Ri+1e1) · (R1 . . . Rie1) =
L−1∑

i=1

(Ri+1e1) · e1 =
L∑

i=2

cos(θi ),

(19)
which gives a nice factorisation of the Boltzmann weight. The same identity holds for N = 2.

Therefore, we have that

∫

�L

f (S)e−βH f
L (S)νL(dS) ∝

∫
dθdv f (S(θ, v)) sin(θ1)

N−2
L∏

i=2

sin(θi )
N−2eβ cos(θi ),

where

• in the case N ≥ 3, the right-hand-side integral is over [0, π]L × (SN−2)L , and we
identified {x : ‖x‖ = 1, x · e1 = 1} with S

N−2,
• in the case N = 2, the the right-hand-side integral is over [0, 2π]L and there is no variable

v.

Next, for N ≥ 3, we introduce the probability measures ρ1, . . . , ρL on [0, π] × S
N−2

given by

dρ1(θ1, v1) ∝ ν(dv1) sin(θ1)
N−2dθ1,

dρi (θi , vi ) ∝ ν(dvi ) sin(θi )
N−2eβ cos(θi )dθi , i = 2, . . . , L.

For N = 2, we use instead measures on [0, 2π ] given by

dρ1(θ1) ∝ dθ1,

dρi (θi ) ∝ eβ cos(θi )dθi , i = 2, . . . , L.

With this notation, we rewrite the expected value of some f : �L �→ R with respect to the
Gibbs measure μf

L as
μf
L ( f ) = ⊗L

i=1ρi
(
f (S(θ, v))

)
. (20)
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2.2 Poincaré Inequalities for Increments Measures

For f : [0, π] × {x : ‖x‖ = 1, x · e1 = 0} → R, which maps (θ, v) to f (θ, v), denote as
before ∂

∂θ
the partial derivative with respect to θ and ∂

∂v
the partial derivative with respect to

v (so that ∂
∂v

f (θ, v) is a linear function from the tangent space of {x : ‖x‖ = 1, x · e1 = 0}
at v toR). We also write VarP ( f ) for the variance of f with respect to a probability measure
P on [0, π] × {x : ‖x‖ = 1, x · e1 = 0}.

When N ≥ 3, the measures ρi are product measures: the product of the uniform measure
on {x : ‖x‖ = 1, x ·e1 = 0} ≡ S

N−2 and of ameasure on [0, π].We start by proving Poincaré
inequalities for these “elementary constituents” which in turn imply Poincaré inequalities for
the ρi s. We stress that we do not try to obtain the optimal constants, but we need a reasonable
control over their dependency on the parameters.

We first prove the bounds used for N ≥ 3.

Lemma 2.3 Let a, b ≥ 0. Let Pa,b be the probability measure on [0, π] with density propor-
tional to sin(θ)aeb cos(θ). Then, for any f : [0, π ] → R smooth,

VarPa,b ( f ) ≤ c1(a, b)Ea,b
(| f ′|2),

where Ea,b is the expectation with respect to Pa,b, and

c1(a, b) = π32ab(a+1)/2

∫ √
bπ/2

0 dxxae−x2/2
if b > 0, c1(a, 0) = π22(a + 1)4a

πa
.

Moreover, c1(a, b) ≤ 8π32ab(a+1)/2 for b ≥ 1.

Proof Start with b > 0. Let P = Pa,b. Set C = ∫ π

0 dx sina(x)eb cos(x). Then,

VarP ( f ) = 1

2C2

∫ π

0
dx
∫ π

0
dy( f (x) − f (y))2 sina(x)eb cos(x) sina(y)eb cos(y)

≤ π2

2C2

∫ π

0
dx
∫ π

0
dy
∫ 1

0
dt | f ′(t x + (1 − t)y)|2 sina(x)eb cos(x) sina(y)eb cos(y).

We can then use that on [0, π ], g(x) = −a ln(sin(x)) is convex and non-negative, therefore

g(x) + g(y) ≥ g(t x + (1 − t)y) + g((1 − t)x + t y) ≥ g(t x + (1 − t)y),

and so sina(x) sina(y) ≤ sina(t x + (1 − t)y). Also,

cos(x) + cos(y) − cos(t x + (1 − t)y) ≤ 1,

as cos is non-increasing on [0, π ] and less or equal to 1. Using these and changing variable
to z = t x + (1 − t)y, we obtain

∫ π

0
dx
∫ π

0
dy
∫ 1

0
dt | f ′(t x + (1 − t)y)|2 sina(x)eb cos(x) sina(y)eb cos(y)

≤ eb
∫ 1

0
dt
∫ π

0

dz

t

∫ π

0
dy| f ′(z)|2 sina(z)eb cos(z)1z−(1−t)y∈[0,tπ ]

≤ 2πeb
∫ π

0
dz| f ′(z)|2 sina(z)eb cos(z)
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as
∫ 1
0 dt 1t

∫ π

0 dy1z−(1−t)y∈[0,tπ ] ≤ 2π . Now,

C ≥
∫ π

0
dx sina(x)eb−bx2/2 ≥ eb

∫ π/2

0
dx

xa

2a
e−bx2/2 = eb

2ab(a+1)/2

∫ √
bπ/2

0
dxxae−x2/2,

as cos(γ ) ≥ 1 − γ 2/2 for γ ∈ [0, π ], and sin(γ ) ≥ γ /2 for γ ∈ [0, π/2]. Combining all
the estimates gives the main claim. The last point follows from (for b ≥ 1)

∫ √
bπ/2

0
dxxae−x2/2 ≥

∫ π/2

1
dxe−x2/2 ≥ 1/8.

The case b = 0 follows the exact same path with the lower bound C = ∫ π

0 sina(x) ≥
πa+1

22a+1(a+1)
. ��

The complete spectrum and eigenfunctions of the spherical Laplacian are known, and in
particular its spectral gap is equal to N − 1 (see, e.g., [1, Section 2.2.3]).

Lemma 2.4 Let N ≥ 2. Let ν be the uniform probability measure on S
N−1. Then, for any

f : SN−1 → R smooth,
Varν( f ) ≤ c2(N )ν

(‖Df ‖2),
with c2(N ) = 1

N−1 .

The last bound is for the XY model case (N = 2).

Lemma 2.5 Let b ≥ 0. Let Pb be the probability measure on [0, 2π]with density proportional
to eb cos(θ). Then, for any smooth 2π -periodic f : R → R,

VarPb ( f ) ≤ c3(b)Eb
(| f ′|2),

where Eb is the expectation with respect to Pb, and

c3(b) = π3
√
b

∫ √
bπ

−√
bπ

e−x2/2
if b > 0, c3(0) = π2

2
.

Moreover, c3(b) ≤ 2π3
√
b for b ≥ 1.

Proof Let b > 0, C = ∫ 2π0 dxeb cos(x). One has

VarPb ( f ) = 1

2C2

∫ 2π

0
dx
∫ π

−π

dy( f (x) − f (x + y))2eb(cos(x)+cos(x+y))

≤ π2

2C2

∫ 1

0
dt
∫ 2π

0
dx
∫ π

−π

dy| f ′(x + t y)|2eb(cos(x)+cos(x+y))

(we simply shifted the integration domain of y to the full period [x − π, x + π] which
preserves the integral by periodicity). We can then use

cos(x) + cos(x + y) − cos(x + t y) ≤ 1

as y ∈ [−π, π], and proceed as in the proof of Lemma 2.3 to obtain

VarPb ( f ) ≤ π2eb

2C2

∫ 1

0
dt
∫ 2π

0
dx
∫ π

−π

dy| f ′(x + t y)|2eb cos(x+t y)
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= 2π3eb

2C2

∫ 2π

0
dx | f ′(x)|2eb cos(x) = π3eb

C
Eb(| f ′|2)

where we used periodicity in the second line. Now, as in the proof of Lemma 2.3, C ≥
∫ π

−π
eb−bx2/2 = eb√

b

∫ √
bπ

−√
bπ

e−x2/2, which gives the claim. A simplified version of the above
treats the case b = 0 (there, C = 2π ). ��

We end this section by noticing that we have everything we need to controlμf
L = ⊗L

i=1ρi ,
as the ρi s are themselves product of one or two of the above cases. More precisely, for
f : [0, π] × S

N−2 → R smooth (N ≥ 3), i ≥ 2, and (θ, v) ∼ ρi , by the tensorization
property of variance,

Varρi ( f ) ≤ PN−2,β ⊗ ν
(
Varν( f (θ, v)) + VarPN−2,β ( f (θ, v))

)

≤ PN−2,β ⊗ ν
(
c2(N − 2)ν(‖∂v f (θ, v)‖2) + c1(N − 2, β)EN−2,β(|∂θ f (θ, v)|2))

= c2(N − 2)ρi
(‖∂v f (θ, v)‖2)+ c1(N − 2, β)ρi

(|∂θ f (θ, v)|2), (21)

where Pa,b is the measure of Lemma 2.3. A similar bound holds for i = 1.

2.3 Proof of Theorem 1.1

Introduce

c(β, N ) =
{
max(c3(β), c3(0)) if N = 2,

max(c1(N − 2, β), c1(N − 2, 0), c2(N − 2)) if N ≥ 3.
(22)

By Lemmas 2.3, 2.4, and 2.5, for β larger than 1,

c(β, N ) ≤ π32N+1β(N−1)/2. (23)

The upper bound in Theorem 1.1 is a consequence of the following Lemma and of (23).

Lemma 2.6 Let f : �L → R be smooth. Then,

Varμf
L
( f ) ≤ β 17c(β, N )L2 Df

L,β( f , f ) ,

where c(β, N ) is given by (22).

Proof Since μf
L is the product measure (20), we have that by the tensorization of variance,

Varμf
L
( f ) ≤ ⊗L

i=1ρi

( L∑

i=1

Varρi
(
f (θ1, v1, . . . , θL , vL)

))
.

Applying (21), one obtains

Varμf
L
( f ) ≤ c(β, N ) ⊗L

i=1 ρi

( L∑

i=1

(‖∂vi f ‖2 + |∂θi f |2
))

. (24)

Moreover, by the chain rule, for f : (SN−1)L → R smooth, one has

∂vi f
(
S(θ, v)

) =
L∑

j=i

D j f (S(θ)) · ∂vi S j (θ1, v1, . . . , θ j , v j ).
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and

∂θi f
(
S(θ, v)

) =
L∑

j=i

D j f (S(θ)) · ∂θi S j (θ1, v1, . . . , θ j , v j ).

Observe that by our choice of coordinates (Lemma 2.2), for any L ≥ j ≥ i ≥ 1,

‖∂θi S j (θ1, v1, . . . , θL , vL )‖ ≤ 1, ‖∂vi S j (θ1, . . . , θL , vL)‖ ≤ 4.

Therefore, by Cauchy-Schwarz,

L∑

i=1

(‖∂vi f ‖2 + |∂θi f |2
) ≤

L∑

i=1

(
16L

L∑

j=i

‖Dj f ‖2 + L
L∑

j=i

‖Dj f ‖2
)

≤ 17L2
L∑

i=1

‖Di f ‖2.

Plugging this in (24), and recalling (4) concludes the proof. ��

3 XY Model on the Cycle

In this section we prove Theorem 1.2. We start with the proof of the upper bound.

3.1 Upper Bound

The proof is based on the upper bound for free boundary conditions in Theorem 1.1 and
simple comparison between the free and the periodic boundary condition system. The first
observation is that from the definitions (1)-(2) and the fact that |Si · Si+1| ≤ 1 it follows that
the relative densities dμf

L/dμper
L , dμper

L /dμf
L satisfy

∥∥∥∥∥
dμf

L

dμper
L

∥∥∥∥∥∞
≤ Zper

L,β

Z f
L,β

exp (β) ,

∥∥∥∥∥
dμper

L

dμf
L

∥∥∥∥∥∞
≤ Z f

L,β

Zper
L,β

exp (β) . (25)

At this point, for any smooth function f : �L → R one has

Varμper
L

( f ) = inf
c∈Rμ

per
L (( f − c)2) ≤ μ

per
L (( f − μf

L ( f ))2)

≤ Z f
L,β

Zper
L,β

exp (β) μf
L(( f − μf

L( f ))2) = Z f
L,β

Zper
L,β

exp (β)Varμf
L
( f ).

Similarly,

Df
L,β( f , f ) ≤ Zper

L,β

Z f
L,β

exp (β)Dper
L,β( f , f ).

Therefore, from Theorem 1.1 it follows that

Varμper
L

( f ) ≤ e2βC(2)L2β3/2Dper
L,β( f , f ).

This implies the upper bound (9).
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3.2 Lower Bound

We use the variational principle (5). In order to construct an appropriate test function, we
follow [4], where a proxy for the winding number of the spin chain was defined as follows.
Let Si ∈ S

1 denote the i-th spin, with SL+1 = S1, and write [θ ] for the representative in
the interval (−π, π] of any θ ∈ S

1. If S ∈ (S1)L is such that Si+1 − Si ∈ S
1 \ {π} for all

i = 1, . . . , L , define the function

W(S) = 1

2π

L∑

i=1

[Si+1 − Si ]. (26)

Because of the periodic boundary condition, W is an integer, which can be interpreted as
the winding number of the spin configuration. Moreover, the functionW is continuous in its
domain of definition D given by

D =
{
S ∈ (S1)L : Si+1 − Si ∈ S

1 \ {π}, i = 1, . . . , L
}

. (27)

Next define the events

B = {S ∈ D : W(S) = 0} , (28)

Aδ = {S ∈ D : W(S) = 0 and Si − Si+1 ∈ [π − δ, π + δ] for some i} . (29)

We let f : (S1)L �→ R denote a C∞ function such that f = 0 on Bc, f = 1 on B \ Aδ

and such that ‖Di f ‖∞ ≤ Cδ , where Cδ = O(1/δ) is a constant independent of β, L . Since
Di f (S) 
= 0 implies that S ∈ Aδ , using this function f in the variational principle (5) one
obtains

gapperL,β ≤ 1

β
C2

δ L
μ
per
L,β(Aδ)

VarperL,β f
. (30)

Moreover, by definition of f one has

VarperL,β f ≥ μ
per
L,β(B \ Aδ)μ

per
L,β(Bc). (31)

It remains to estimate μ
per
L,β(Aδ) and the probabilities in (31).

For δ > 0, define the events

B0
δ = {Si − S0i ∈ [−δ, δ] for all i = 1, . . . , L

}
,

B1
δ = {Si − S1i ∈ [−δ, δ] for all i = 1, . . . , L

}
,

where the configurations S0, S1, seen as variables in the complex plane, are defined by

S0j = 1 , S1j = e2π i
j
L , j ∈ {1, . . . L}.

Observe that, for small enough δ = δ(L) depending on L ,

B0
δ ∈ {W = 0} and B1

δ ∈ {W = 1},
and, writing H(S) := Hper

L (S),

H(S) ≥ 2 − δ2 − L, S ∈ Aδ,

H(S) ≤ −(1 − δ2)L, S ∈ B0
δ ,

H(S) ≤ −L + C(δ + L−1) + Cδ2L , S ∈ B1
δ ,
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for some absolute constant C > 0. With the notation vol(A) = ∫
A dS for any A ⊂ �,

� = �L , we obtain

vol(B0
δ )eβ(1−δ2)L ≤

∫

�

e−βH(S)dS ≤ vol(�)eβL .

Therefore, writing μ = μ
per
L,β ,

μ(Aδ) =
∫
Aδ

e−βH(S)dS
∫
�
e−βH(S)dS

≤ vol(Aδ)e−β
(
2−δ2−L

)

vol(B0
δ )eβ(1−δ2)L

= vol(Aδ)

vol(B0
δ )

e−β
(
2−δ2(L+1)

)
= Cδ,L e

−β
(
2−δ2(L+1)

)
,

where Cδ,L is a constant depending on δ, L . We can also estimate

μ(B0
δ ) =

∫
B0

δ
e−βH(S)dS

∫
�
e−βH(S)dS

≥ vol(B0
δ )eβ(1−δ2)L

vol(�)eβL
= cδ,Le

−δ2Lβ,

where cδ,L is another constant depending on δ, L . Finally,

μ(B1
δ ) =

∫
B1

δ
e−βH(S)dS

∫
�
e−βH(S)dS

≥ vol(B1
δ )eβ

(
L−C(δ+L−1)−Cδ2L

)

vol(�)eβL
,

which implies

μ(B1
δ ) ≥ cδ,Le

−(C(δ+L−1)+Cδ2L
)
β,

for some other constant cδ,L depending on δ, L . Summarizing, we obtain the following
estimate.

Proposition 3.1 For all L ∈ N, δ = δ(L) ≤ L−1, for all β ≥ 1,

μ(Aδ)

μ
per
L,β(B \ Aδ)μ

per
L,β(Bc)

≤ μ(Aδ)

μ(B0
δ )μ(B1

δ )
≤ Cδ,Le

−(2−C0L−1)β , (32)

where Cδ,L is a constant depending on δ, L, and C0 is an absolute constant.

The lower bound in (10) now follows from (30)-(31) and Proposition 3.1.

Remark 3.1 (A finer lower bound for β ≥ C log L) The estimate in Proposition 3.1 captures
the correct energy barrier of size 2β up to O(L−1) corrections, see the matching upper bound
(9). However, it provides no quantitative estimate in terms of the system size L . To resolve
this, we observe that Proposition 3.1 can be considerably refined by adapting the analysis
from [4]. Rather than giving an explicit derivation, we content ourselves with the following
observations. One can use the arguments in [4, Section 4] to prove that for all L and β ≥ 1,

μ
per
L,β(B) ≥ 1

L
, μ

per
L,β(Bc) ≥ 1

C0
√

βL
e−C0β/L ,

where C0 is an absolute constant, and that for any δ ∈ (0, 1) one has

μ
per
L,β(Aδ) ≤ C0βLδe−β(2−δ2/2).
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From these bounds it is not difficult to check that for an appropriate absolute constant C0, if
β ≥ C0 log L , L ≥ C0, then for all fixed δ ∈ (0, 1), the left hand side of (32) is bounded
from above by

C0β
3/2L3δ e−β(2−δ2/2−C0L−1).

Thus, from (30) and (31) one arrives at the following relaxation time lower bound: for all
δ ∈ (0, 1), there exists a constant cδ > 0 such that for L ≥ 1/cδ , and β ≥ C0 log L , for an
appropriate absolute constant C0, one has

T per
rel (L, β) ≥ cδβ

−1/2L−4 e(2−δ2)β . (33)

4 O(N) on the Cycle

Here we prove Theorem 1.3. In order to simplify notation we omit some subscripts and
superscripts; we only discuss in this section the relaxation time for fixed N ≥ 3, and fixed L
and β, with periodic boundary conditions.

4.1 General Strategy

In order to bound the relaxation time from above, we will show how to bring a configuration,
using a canonical path method, to a small neighborhood where the hamiltonian in convex.

Definition 4.1 The arctic is defined as the set of configurations where all spins are in the ball
of radius arccos(0.99) ≈ 0.02 × 2π around e1:

A = {S ∈ S
N−1 : S · e1 > 0.99}L . (34)

The following is a simple consequence of our definitions.

Fact 1 Hper
L is convex on A.

Definition 4.2 Fix an open set U ⊆ �. A path from U is a continuous function � : U ×
[0, 1] → �. We define the path’s energy and entropy respectively as


H�(S, t) = Hper
L (�(S, t)) − Hper

L (S), (35)


Ent�(S, t) = log

∣∣∣∣
d(�(·, t))#νL

dνL

∣∣∣∣ , (36)

where
∣∣∣ d(�(·,t))#νL

dνL

∣∣∣ is the density of the push-forward measure of νL with respect to νL ;

in local coordinates it is given by the determinant of the Jacobian matrix. The free energy
barrier of the path is defined by


F[�] = sup
t∈[0,1]

sup
S∈U


H�(S, t) − β−1
Ent�(S, t). (37)

The speed of the path is defined by

v[�] = sup
t∈[0,1]

sup
S∈U

‖∂t�(S, t)‖, (38)

where ‖ · ‖ denotes the euclidean norm

‖ξ‖2 =
L∑

j=1

‖ξ j‖2 , ξ = (ξ1, . . . , ξL ) ∈ R
L .
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The paths to be considered below are almost everywhere differentiable, so the above is well
defined as an essential supremum.

Lemma 4.1 Let U1, . . . ,UK be some finite collection of open subsets of �, and �1, . . . , �K

a collection of paths, �i : Ui × [0, 1] → �. Assume:

(1)
⋃K

i=1Ui = �.
(2) �i (S, 0) = S and �i (S, 1) ∈ A for all S ∈ Ui .
(3) 
F := supi 
F[�i ] and v := supi v[�i ] are both finite.

Then
Trel ≤ 3K 2β(v2eβ
F + e2β
Fμ(A)) (39)

In particular, if the energy barrier supi supt∈[0,1] supS∈Ui

H�i (S, t) is non-positive then

the β-dependence of the relaxation time grows at most linearly.

Proof Fix some test function f : � → R, and use the notation �i (X) = �i (X , 1). The
variance of f with respect to μ := μ

per
L,β satisfies

2VarperL,β( f ) =
∫

dμ(X)dμ(Y )( f (X) − f (Y ))2

≤
K∑

i=1

K∑

j=1

∫
dμ(X)dμ(Y )1Ui (X)1Uj (Y )( f (X) − f (Y ))2

=
K∑

i=1

K∑

j=1

∫
dμ(X)dμ(Y )1Ui (X)1Uj (Y )

× ( f (X) − f (�i (X)) + f (�i (X)) − f (� j (Y )) + f (� j (Y )) − f (Y ))2

≤ 3
K∑

i=1

K∑

j=1

∫
dμ(X)dμ(Y )1Ui (X)1Uj (Y )( f (X) − f (�i (X)))2

+3
K∑

i=1

K∑

j=1

∫
dμ(X)dμ(Y )1Ui (X)1Uj (Y )( f (�i (X)) − f (� j (Y )))2

+3
K∑

i=1

K∑

j=1

∫
dμ(X)dμ(Y )1Ui (X)1Uj (Y )( f (� j (Y )) − f (Y ))2

≤ 6K
K∑

i=1

∫
dμ(X)1Ui (X)( f (X) − f (�i (X)))2

+3
K∑

i=1

K∑

j=1

∫
dμ(X)dμ(Y )1Ui (X)1Uj (Y )( f (�i (X)) − f (� j (Y )))2

= 6K
K∑

i=1

(I)i + 3
K∑

i=1

K∑

j=1

(II)i, j (40)

We start with the first term. For any i and X ∈ �,

( f (X) − f (�i (X)))2 =
⎛

⎝
∫ 1

0
dt

L∑

j=1

Dj f (�i (X , t)) · (∂t�i (X , t)) j )

⎞

⎠
2

(41)
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≤ v2
∫ 1

0
dt

L∑

j=1

‖Dj f (�i (X , t))‖2, (42)

where Dj denotes the gradient on the sphere SN−1 acting on the j-th spin. Plugging this into
(I), recalling the definition of μ, and then changing variable to X ′ = �I (X , t), yield

(I)i ≤ v2
∫ 1

0
dt
∫

dμ(X)1Ui (X)

L∑

j=1

‖Dj f (�i (X , t))‖2 (43)

= v2

Z

∫ 1

0
dt
∫

dν(X)e−βH(�i (X ,t))+β
H�i (X ,t)1Ui (X)

L∑

j=1

‖Dj f (�i (X , t))‖2 (44)

= v2

Z

∫ 1

0
dt
∫

dν(X ′)e−
Ent�i (X ,t)e−βH(X ′)eβ
H�i (X ,t)1Ui (X)

L∑

j=1

‖Dj f (X
′)‖2

(45)

≤ v2eβ
F
∫ 1

0
dt
∫

dμ(X ′)
L∑

j=1

‖Dj f (X
′)‖2 = v2eβ
F

L∑

j=1

μ(‖Dj f ‖2) (46)

= βv2eβ
FDper
L,β( f , f ). (47)

For the second term, the change of variables X ′ = �i (X , t), Y ′ = � j (Y , t) leads using
the same calculation to

(II)i, j ≤ e2β
F
∫

dμ(X ′)dμ(Y ′)1A(X ′)1A(Y ′)( f (X ′) − f (Y ′))2. (48)

This last integral equalsμ(A)2 times the variance of f under the conditional measureμ(·|A).
Since on A the Hamiltonian is convex, and since � has positive curvature 1, the Brascamp-
Lieb inequality for μ(·|A), see e.g. [12, Theorem 1.2], tells us that:

1

2

∫
dμ(X |A)dμ(Y |A)( f (X) − f (Y ))2 ≤

L∑

j=1

μ(‖Dj f ‖2|A). (49)

We conclude that

(II)i, j ≤ 2e2β
Fμ(A)

L∑

j=1

μ(‖Dj f ‖2) = 2βe2β
Fμ(A)Dper
L,β( f , f ). (50)

Together with the bound (47), this ends the proof of the lemma. ��

4.2 Constructing The Path: a Soft Argument for Any N ≥ 3

Wewill construct paths to be used in Lemma 4.1 in three parts: first, we use the deterministic
flow in order to bring the configuration near a critical point, where all spins are on a single
great circle, defined as the intersection of the sphere with a 2 dimensional plane. Then, we
pull the spins to a point perpendicular to that great circle. Finally, we rotate the configuration
to the arctic. See Figure 1.
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Fig. 1 Illustration of the path �. In the first step all spins are brought to the vicinity of a great circle. Once
there, we pull all spins towards a single point

Step 1: Approaching a Great Circle

Define the deterministic flow ϕ : � × R → � as the solution, for each S ∈ �, of the
differential equation

∂ϕ(S, t)

∂t
= −DH(ϕ(S, t)), (51)

ϕ(S, 0) = S, (52)

where we use D = (Dj ) j=1,...,L for the L-vector of sphere gradients Dj .

Claim 1 Let S be a stationary point of the flow. Then the spins S1, . . . , SL all belong to the
same great circle.

Proof By explicit calculation in R
N ,

−Di H(S) = Di
[
Si−1 · Si + Si · Si+1

] = Si−1 − (Si−1 · Si )Si + Si+1 − (Si+1 · Si )Si
= Si−1 + Si+1 − (Si−1 · Si + Si+1 · Si )Si .

Therefore, Di H(S) = 0 implies that Si+1 is in the linear span of Si−1 and Si . It follows that
if DH(S) = 0, then this holds for all i , and therefore all the spins belong to the same 2D
plane. ��

Step 2: Pulling Towards a Single Point

Once all spins are on a great circle, we move them to a point s perpendicular to that circle.
First, we define the flow φ that does that. We then need to show that the energy is decreasing
along the flow. This is done in two parts—initially, spins that were on one side of the great
circle move closer to it, and the others move away. After a short period, the spins on the
"wrong" side cross the great circle, and in the second part of the motion all spins are on a
single hemisphere. Claim 2 shows that if we start ε-close to a great circle, after time 2ε all
points are going to be at the same side of the circle.
We would then like to show that the energy is decreasing up to time 2ε. This unfortunately
is not always true—if all spins are in the hemisphere opposite to s, then initially distances
grow and the energy increases. This problem, however, could be easily solved by replacing
s with −s, which is now in the right hemisphere. In Claim 4 we show that whenever we start
ε-close to the great circle, pulling the spins to s or −s results in energy decrease.
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Finally, Claim 5 shows that once all spins are in the same hemisphere as s, the energy is
decreasing.

Definition 4.3 Fix two spins s, s′ ∈ S
N−1. We define the function φs : SN−1 × R → S

N−1

as the flow on the sphere given by the following equation in RN :

∂

∂t
φs(s

′, t) = s − (φ(s′, t) · s)φ(s′, t),

φs(s
′, 0) = s′.

For a configuration S = (S1, . . . , SL) we write φs(S, t) = (φs(S1, t), . . . , φs(SL , t)).

Observation 1 If s′ is perpendicular to s, we can solve explicitly

φs(s
′, t) = tanh(t) s + 1

cosh(t)
s′,

which shows that limt→∞ φs(s′, t) = s. This last fact is true in general—we can always
choose s̃ and t0 such that

φs(s
′, t) = tanh(t − t0) s + 1

cosh(t − t0)
s̃,

by taking s̃ perpendicular to s in the plane spanned by s and s′, and determine t0 using
φs(s′, 0) = s′.

Claim 2 For any ε < 1
2 , if

∣∣s · s′∣∣ < ε then φs(s′, 2ε) · s > 0.

Proof Note that
d

dt

(
φs(s

′, t) · s) = 1 − (φ(s′, t) · s)2 ≥ 0,

so it is enough to prove that φs(s′, t)·s cannot remain in the interval [−ε, 0] for all t ∈ [0, 2ε].
But assuming it does,

d

dt

(
φs(s

′, t) · s) = 1 − (φ(s′, t) · s)2 >
3

4
,

and therefore φs(s′, 2ε) · s > −ε + 3
4 · 2ε = ε

2 > 0. ��
Claim 3 Fix s ∈ S

N−1, and a configuration S where all spins are on a great circle perpen-
dicular to s. If not all spins are aligned, then

d2

dt2
H(φs(S, t))

∣∣∣∣
t=0

< 0.

Proof Since all spins are perpendicular to s, we can write explicitly, setting s = (s, . . . , s) ∈
�,

φs(S, t) = tanh(t) s + 1

cosh(t)
S,

H(φs(S, t)) = 1

2

∑

i

‖φs(S, t)i − φs(S, t)i−1‖2 + const.

= 1

2

1

cosh(t)2
H(S) + const.
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d

dt
H(φs(S, t)) = − sinh(t)

cosh(t)3
H(S)

d2

dt2
H(φs(S, t)) = 2 sinh(t)2 − 1

cosh(t)4
H(S).

��
In the following we use d(·, ·) to denote the geodesic distance on the sphere.

Claim 4 Fix s ∈ S
N−1, and a non-constant configuration S0 where all spins are on a great

circle perpendicular to s. There exists ε small enough (depending on S0), such that for all S
satisfying d(Si , S0i ) < ε for all i , either H(φs(S, t)) or H(φ−s(S, t)) (or both) is decreasing
for t ∈ [0, 2ε].
Proof We consider two cases. The first is when d

dt H(φs(S, 0)) ≤ 0. Since ‖ ∂
∂t φs(s′, t)‖ ≤ 1,

during the time interval [0, 2ε] all spins of S remain at a distance at most 3ε form S0.

By the last claim d2

dt2
H(φs(S0, 0)) < 0, hence we may choose ε small enough, such that

d2

dt2
H(φs(S′, t)) < 0 for all S′ in a 3ε-neighborhood of S0. Then d

dt H(φs(S, t)) ≤ 0 for all
t ∈ [0, 2ε].

In the secondcase d
dt H(φs(S, 0)) ≥ 0, but thenby symmetryof theflow d

dt H(φ−s(S, 0)) ≤
0 and we are back to the first case. ��
Claim 5 Fix s ∈ S

N−1 and a configuration S, such that s · Si > 0 for all i . Then H(φs(S, t))
is a decreasing function for t ∈ [0,∞].
Proof For all i , denoting s = (s, . . . , s) ∈ (SN−1)L ,

− Di H(S) · (s − (S · s)S)i = Si−1 · (s − (Si · s)Si ) + Si+1 · (s − (Si · s)Si )
− (Si−1 · Si + Si+1 · Si ) Si · (s − (Si · s)Si )
= Si−1 · s − (Si · s)(Si · Si−1) + Si+1 · s − (Si · s)(Si · Si+1).

Therefore,
∑

i

−Di H(S) · (s − (S · s)S)i

= 2
(∑

i

Si
)

· s −
(∑

i

(Si · Si−1)Si
)

· s −
(∑

i

(Si · Si+1)Si
)

· s

=
∑

((1 − (Si · Si−1))Si ) · s +
∑

((1 − (Si · Si+1))Si ) · s > 0.

Note that if s · Si > 0 then at all positive times φs(S, t) > 0 (since spins always get closer
to s). Therefore we can plug φs(S, t) for S in the above inequality, and obtain:

d

dt
H(φs(S, t)) = DH · ∂φs(S, t)

∂t
= DH · (s − (φ(S, t) · s)φ(S, t)

)
< 0.

��

Step 3: Combining all Parts of the Path

Definition 4.4 Fix T > 0, s ∈ S
N−1, and a configuration S0 where all spins are on a plane

perpendicular to s. Let UT ,s,S0 be the set of configurations S, such that:
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(1) If S0 is constant, then under the deterministic flow ϕ, all spins ϕ(S, T )i are at distance
at most arccos(0.99) from S0.

(2) If S0 is not constant, for ε = ε(S0) given in Claim 4,

(a) all spins ϕ(S, T )i are at distance at most ε from S0i ; and
(b) H(φs(S, t)) is decreasing for t ∈ [0, 2ε].

Lemma 4.2 Fix T , s, S0 as in definition above. Then there exists a map �T ,s,S0 : UT ,s,S0 ×
[0, 1] → � such that:

(1) �T ,s,S0(S, 0) = S and �T ,s,S0(S, 1) is in in the arctic A.
(2) H(�(S, t)) is non-increasing for all t .

Moreover, v[�T ,s,S0 ] and supS,t |
Ent�(S, t)| are finite.

Proof If S0 is non-constant, take

�T ,s,S0(S, t) =

⎧
⎪⎨

⎪⎩

ϕ(S, 3T × t) t ∈ [0, 1
3

]
,

φs
(
ϕ(S, T ),C × (t − 1

3

))
t ∈ [ 13 , 2

3

]
,

ψs
(
φs (ϕ(S, T ),C/3) , t − 2

3

)
t ∈ [ 23 , 1

]
,

where ψ is a rotation from s to e1 with speed 3d(s, e1). C should be chosen such that
tanh(C/3 − 2ε) is close enough to 1, guaranteeing that we end up in the arctic.

If S0 is constant, we skip φ and take ψ to be a rotation of S0 to e1.
The speed ∂t� can be calculated explicitly on each part of the path—in the time interval

[0, 1/3] it is given by 1
3T ‖DH‖ which is bounded on the entire �. During [1/3, 2/3] it is

boundedby
√
L

C , since each coordinate of ∂tφ(S, t) is boundedby1, hence‖∂tφ(S, t)‖ ≤ √
L .

Finally, in the last interval the speed is bounded by 3π
√
L , since during time 1/3 each

coordinate crosses distance at most π .
In order to show that the entropy is bounded we use the fact that for a flow given by an

equation of the type

∂t�(S, t) = f (�(S, t)),

�(S, 0) = S,

the entropy production is the divergence of f :


Ent�(S, t) =
t∫

0

div f (�(S, u))du, (53)

see, e.g., [19, Section 8.2]. In the first part of the path div f is bounded by 3T sup |
H |, in
the second part by NL , and in the third part it is 0. Since composing the paths results in
adding the entropies, the overall entropy is bounded. ��

Proof of Theorem 1.3 Since all limit points of the deterministic dynamics are on a great circle,
any configuration S belongs to some set UT ,s,S0 . These are open sets, and � is compact,
therefore there exists a finite cover U1, . . . ,UK . We set for i = 1, . . . , K the function �i

to be equal �T ,s,S0 , for T , s, S0 such that Ui = UT ,s,S0 . The hypotheses of Lemma 4.1 are
then satisfied, with finite v and 
Ent (which do not depend on β), and 
H ≤ 0. ��
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4.3 Explicit Construction for N = 3

When N = 3weare able to construct the path directly,without using a compactness argument.
This enables us to obtain an explicit (though not optimal) estimate on the constant C(L) in
Theorem 1.3.

The path consists of three parts: first, we align the spins so that they fall close to a plane.
We then contract the spins towards a well chosen pole. This second step is where the crucial
difference between O(3) and O(2) enters. Finally, we rotate the whole configuration to get
it close to e1 and into the arctic.

The three steps are summarized in Lemmas 4.4, 4.5, and 4.6. We will need a few prepa-
rations. The first is stating that “if all spins are close to some great circle, they are also close
to a great circle in a fixed finite set of great circles”.

Lemma 4.3 There exists C > 0 such that for any ε > 0, one can find K ≤ Cε−2 integer, and
a set {v1, . . . , vK } ⊂ S

2 such that for any L, and any collection S1, . . . , SL ∈ S
2 satisfying

|Si · s| ≤ ε for all i ∈ {1, . . . , L} and some fixed s ∈ S
2, there exits k ∈ {1, . . . , K } such that

|Si · vk | < 2ε for all i ∈ {1, . . . , L}.
Proof Let ε > 0. Let A ⊂ S

2 be such that for every s ∈ S
2, there is v ∈ A such that

|s − v| < ε. One can find such a set containing at most Cε−2 points with C universal (for
example, by projecting on S

2 an ε/2 mesh-size grid on the boundary of the cube of side 2
centred at 0). Then for such a set A, for any s ∈ S

2, there is v ∈ A with |v − s| < ε. For this
v, one has |S · v| ≤ |S · (v − s)| + |S · s| ≤ ε + |S · s| for every S ∈ S

2, so

|S · s| < ε �⇒ |S · v| < 2ε,

which gives the claim.

Fix sin( π
16 ) ≥ ε > 0, and let Vε = {v1, . . . , vK } ⊂ S

2 be a set whose existence is
guaranteed by the previous Lemma (with K ≤ Cε−2).

For s ∈ S
2, define then

D1(ε, s) = {S ∈ �L : |Si · s| < ε, ∀i = 1, . . . , L}.
Define also

�±
L (s, ε) = {S ∈ �L : Si · ±s ≥ 1 − 2 arcsin(ε)2 , ∀i = 1, . . . , L}.

The three steps are then represented by the following three lemmas. For the first two of
them, the precise construction and proof is given in the next subsections.

Lemma 4.4 The application ϕ : �L × [0, τ ] → �L with τ = L − 1 − ε, to be constructed
in Section 4.4, is such that

(1) ϕ(S, 0) = S and ϕ(S, τ ) ∈ D1(ε, v) for some v ∈ Vε;
(2) t �→ ϕ(S, t) is continuous, and piecewise differentiable;
(3) t �→ Hper

L (ϕ(S, t)) is non-increasing;
(4) ‖ϕ̇(S, t)‖2 ≤ 4π2L;

(5) letting ft (S) = ϕ(S, t), one has
∣∣∣ d( ft )#νL

dνL

∣∣∣ ≤
(
L
ε

)L
for every t ∈ [0, τ ] and S in the

image of ft .

Lemma 4.5 Let s ∈ S
2. The application φs : D1(ε, s) × [0, π/2 − arcsin(ε)/2] → �L , to

be constructed in Section 4.5, is such that
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(1) φs(S, 0) = S and φs(S, π/2 − 2 arcsin(ε)) ∈ �+
L (s, ε) ∪ �−

L (s, ε);
(2) t �→ φs(S, t) is continuous, and differentiable;
(3) t �→ Hper

L (φs(S, t)) is non-increasing;
(4) ‖φ̇s(S, t)‖2 ≤ 4π2L;

(5) letting ft (S) = φs(S, t), one has
∣∣∣ d( ft )#νL

dνL

∣∣∣ ≤ 2L , for all t ∈ [0, π/2 − 2 arcsin(ε)] and
S in the image of ft .

Lemma 4.6 Let s ∈ S
2. There exist τ = τ(s) ∈ [0, π ], and ψs : �+

L (s, ε) × [0, τ ] → �L

such that

(1) ψs(S, 0) = S and ψs(S, τ ) ∈ �+
L (e1, ε);

(2) t �→ ψs(S, t) is continuous, and differentiable;
(3) t �→ Hper

L (ψs(S, t)) is constant;
(4) ‖ψ̇s(S, t)‖2 ≤ 4π2L;

(5) letting ft (S) = ψs(S, t), one has
∣∣∣ d( ft )#νL

dνL

∣∣∣ = 1 for every t ∈ [0, τ ] and S in the image

of ft .

Proof of Lemma 4.6 Simply set τ to be the angle between s and e1, Rt the rotation of angle t
in the plane spanned by s, e1 (with positive direction from s to e1). Setting ψ(S, t) = Rt (S)

does the job. ��

In the next sections, we prove Lemma 4.4 and 4.5. We then use them together with
Lemma 4.1 to bound the spectral gap in Section 4.6.

4.4 Local Alignment: Proof of Lemma 4.4

The path we will use will align S1, S2, S3 by rotating S2 around the axis spanned by S1 to end
on the geodesic between S1 and S3, then align S1, . . . , S4 by rotating the pair S2, S3 around
the axis spanned by S1 so that S3 ends on the geodesic between S1 and S4, and so on and so
forth. We will first consider a sequence of mappings which is better expressed in a suitable
choice of coordinates. For 1 < k ≤ L + 1, consider the following coordinate system. Let
v1 = S1. If Sk /∈ {v1,−v1}, let

v2 = Sk − (Sk · v1)v1√
1 − (Sk · v1)2

,

otherwise, let v2 be any (fixed) norm one vector orthogonal to v1. Let then v3 be any vector
such that (v1, v2, v3) is an orthonormal basis. Express then a point s on the sphere as

s = (s · v1)v1 +
√
1 − (s · v1)2 cos(θ)v2 +

√
1 − (s · v1)2 sin(θ)v3

with θ ∈ [−π, π) the angle between v2 and the projection of s in the (v2, v3)-plane (so that
θ = 0 when s = Sk). Write ui = Si · v1 ∈ [−1, 1], and θi for the angle θ corresponding to
s = Si . With this choice of coordinates, one has

k−1∑

i=1

Si · Si+1 =
k−1∑

i=1

(
uiui+1 +

√
1 − u2i

√
1 − u2i+1 cos(θi − θi+1)

)
,

where θk = 0.
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Define the path to be

(
ϕk(S, t)

)
i =

{
Si if k ≤ i ≤ L + 1,

uiv1 +
√
1 − u2i cos(θi − tθk−1)v2 +

√
1 − u2i sin(θi − tθk−1)v3 if 1 < i < k.

As, in the chosen coordinates, dνL(S) = dν(S1)
∏L

i=k dν(Si )
∏k−1

i=2 duidθi , one has

∣∣∣
d( ft )#νL

dνL

∣∣∣ = 1

1 − t
,

where ft (S) = ϕk(S, t).
Note then that

−Hper
L (ϕk(S, t)) =

k−1∑

i=1

(
ϕk(S, t)

)
i · (ϕk(S, t)

)
i+1 +

L∑

i=k

Si · Si+1

=
k−2∑

i=1

Si · Si+1 + (uk−1uk +
√
1 − u2k−1

√
1 − u2k cos((1 − t)θk−1)

)

+
L∑

i=k

Si · Si+1.

As the angles are in [−π, π], −Hper
L (ϕk(S, t)) ≥ −Hper

L (S).
One has that

(
ϕk(S, 1)

)
k−1 is in the plane spanned by S1 and Sk , and that the distance to

that plane of
(
ϕk(S, 1 − ε)

)
k−1 is at most

|(ϕ(k)
S (1 − ε)

)
k−1 · v3| ≤ sin(επ).

Let τ0 = 0, τk = τk−1 + 1 − ε/L . Define

ϕ(S, 0) = S,

ϕ(S, t) = ϕk(ϕ(S, τk−1), t − τk−1), t ∈ [τk−1, τk].
This defines a continuous, and piecewise differentiable function of t ∈ [0, τL−1], where
τL−1 = L − 1 − ε. By the triangle inequality, the distance of (ϕ(S, τL−1))i to the plane
spanned by S1 and SL is atmost ε. By the previous observations, theHamiltonian is decreasing
in t and ∣∣∣

d( ft )#νL
dνL

∣∣∣ ≤ (Lε−1)L ,

where ft (S) = ϕ(S, t).
It remains to prove the bound on ‖ϕ̇(S, t)‖2. On each time interval [τk−1, τk], the mapping

is a rotation of the k first spins around the axis spanned by S1, so ‖ϕ̇(S, t)‖2 ≤ 4π4L .

4.5 Contraction Towards a Pole: Proof of Lemma 4.5

For s ∈ S
2, parametrize S ∈ �L by (θ, θ ′) ∈ ([−π

2 , π
2 ]× [0, 2π])L via Si = cos( π

2 + θi )s+
sin( π

2 + θi ) cos(θ ′
i )v1 + sin( π

2 + θi ) sin(θ ′
i )v2 where (s, v1, v2) form an orthonormal basis

of R3. Define the configuration Xt = Xt (S) = Xt (θ, θ ′) via
(
Xt (θ, θ ′)

)
i = cos(

π

2
+ θi + t)s + sin(

π

2
+ θi + t) cos(θ ′

i )v1 + sin(
π

2
+ θi + t) sin(θ ′

i )v2
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Using sin( π
2 + a) = cos(a) and cos( π

2 + a) = − sin(a), one obtains

−Hper
L (Xt (θ, θ ′)) =

L∑

i=1

sin(θi + t) sin(θi+1 + t)+ cos(θi + t) cos(θi+1 + t) cos(θ ′
i − θ ′

i+1).

So, as sin a cos b + sin b cos a = sin(a + b),

− d

dt
Hper
L (Xt (θ, θ ′)) =

L∑

i=1

sin(θi + θi+1 + 2t)(1 − cos(θ ′
i − θ ′

i+1)).

Moreover,

− d2

dt2
Hper
L (Xt (θ, θ ′)) = 2

L∑

i=1

cos(θi + θi+1 + 2t)(1 − cos(θ ′
i − θ ′

i+1)).

First observe three things:

(1) if 0 ≤ θi + t ≤ π/2 for all is, then − d
dt H

per
L (Xt (θ, θ ′)) ≥ 0;

(2) if −π/2 ≤ θi − t ≤ 0 for all is, then − d
dt H

per
L (X−t (θ, θ ′)) ≥ 0;

(3) if |θi | < π
8 for all is and t < π

8 , cos(θi + θi+1 + 2t) ≥ 0 for all is and so

− d2

dt2
Hper
L (Xt (θ, θ ′)) ≥ 0.

When S ∈ D1(ε, s), we have |θi | ≤ arcsin(ε). Therefore, by our constraint on ε, the
sign of − d

dt H
per
L (Xt (θ, θ ′)) at t = 0 determines the desired monotonicity for either t ∈

[0, π/2 − 2 arcsin(ε)] or −t ∈ [0, π/2 − 2 arcsin(ε)]: indeed, the third observation above
gives themonotonicity for all |t | ≤ π/8, and the first two observations show themonotonicity
for |t | > π/8 since |θi | ≤ arcsin(ε).

We can now construct the path φs as follows:

• If S ∈ D1(ε, s) is such that − d
dt H

per
L (Xt (S))

∣∣
t=0 ≥ 0, set

φs(S, t) = Xt (S),

for t ∈ [0, π/2 − 2 arcsin(ε)].
• If S ∈ D1(ε, s) is such that − d

dt H
per
L (Xt (S))

∣∣
t=0 < 0, set

φs(S, t) = X−t (S),

for t ∈ [0, π/2 − 2 arcsin(ε)].
As ε < sin( π

16 ), the first three points of Lemma 4.5 are obvious (the first one follows from
(φs(S, t))i · s = cos(π/2 + θi ± t) depending on the case). To obtain the one-before-last,
observe that the transformation is a rotation of each coordinates, so ‖φ̇s(S, t)‖2 ≤ 4π2L .

The last point of Lemma 4.5 follows from

dνL(S) =
L∏

i=1

cos(θi )dθi dθ ′
i ,

and cos(θi−t)
cos(θi )

≤ 1
cos(π/16) ≤ 2 for θi , t in the concerned regions.
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4.6 Spectral Gap

Let ε > 0. Rather than parametrizing the setsUi ’s of Lemma 4.1with numbers, we label them
with pairs (σ, v) with σ ∈ {−,+} and v ∈ Vε , where Vε is given as right after Lemma 4.3.
Explicitly, we use Uσ,v = {s : χσ,v(s) = 1}, where, for v ∈ Vε , σ ∈ {−,+},

χσ,v(S) = 1ϕ(S,τ1)∈D1(ε,v)1φv(ϕ(S,τ1),τ2)∈�σ
L (v,ε),

and τ1 = L − 1 − ε and ϕ are as in Lemma 4.4, while τ2 = π
2 − 2 arcsin(ε), and φs are as

in Lemma 4.5. Finally, let τ3(s), ψs be as in Lemma 4.6, and define

T1 = τ1, T2 = τ1 + τ2, T3 = τ1 + τ2 + τ3(σv) .

Next, introduce the path

�σ,v(S, t) =

⎧
⎪⎨

⎪⎩

ϕ(S, t) if t ≤ T1,

φv(ϕ(S, T1), t − T1) if t ∈ [T1, T2],
ψv

(
φv(ϕ(S, T1), T2 − T1), t − T2

)
if t ∈ [T2, T3],

which is defined on Uσ,v , is continuous, and is piecewise differentiable in t with the bound

‖�̇σ,v(S, t)‖2 ≤ 4π2L, (54)

at every point of differentiability. Moreover, for any L large enough

∣∣∣
d( ft )#νL

dνL

∣∣∣ ≤ (Lε−1)L , (55)

where ft (S) = �σ,v(S, t). Finally, from the monotonicity of the Hamiltonian along each
piece of the path,

− Hper
L (�σ,v(S, t)) ≥ −Hper

L (S). (56)

Applying Lemma 4.1 with these estimates on the functions (S, t) �→ �σ,v(S, t/T3), and
choosing ε such that �+

L (e1, ε) ⊆ A, yields the bound on the relaxation time stated in
Theorem 1.3 in the case N = 3. ��
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