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Abstract

We discuss the relaxation time (inverse spectral gap) of the one dimensional O (N) model,
for all N and with two types of boundary conditions. We see how its low temperature asymp-
totic behavior is affected by the topology. The combination of the space dimension, which
here is always 1, the boundary condition (free or periodic), and the spin state S¥~!, deter-
mines the existence or absence of non-trivial homotopy classes in some discrete version.
Such non-trivial topology reflects in bottlenecks of the dynamics, creating metastable states
that the system exits at exponential times; while when only one homotopy class exists the
relaxation time depends polynomially on the temperature. We prove in the one dimensional
case that, indeed, the relaxation time is a proxy to the model’s topological properties via the
exponential/polynomial dependence on the temperature.

Keywords Relaxation times - Topological effects - Metastability - Classical spin models

1 Introduction

The investigation of the low-temperature behavior of classical spin systems with continuous
symmetry, such as the O (N) model on a lattice, is a source of many fascinating questions in
equilibrium statistical mechanics [7, 17]. For example, in the two dimensional XY model, a
deep understanding of the interplay between the spin wave approximation and topological
aspects such as vortex formation poses significant mathematical challenges, see [5, 8, 9, 13,
15] for some classical works, and see e.g. [10, 16] for more recent studies. To delve deeper
into these questions, it is natural to study the Langevin dynamics associated to the O(N)
model, that is the reversible diffusion process with stationary distribution given by the O (N)
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Gibbs measure. In the mean-field case, a comprehensive analysis of the relaxation time, or
inverse spectral gap, of Langevin dynamics for the O (N) model, has been achieved recently
in [2]. In particular, these results show that, when N > 2, in sharp contrast with the case of
the Glauber dynamics for the Ising model (N = 1), the relaxation time of the mean field
O (N) model is at most linearly growing with the size of the system, at any fixed temperature.
It is widely believed that such bounds should continue to hold for short range models as well,
see e.g. [3]. In particular, it can be conjectured that for all lattice dimension d > 2, the O (N)
model on a lattice box with side L, for all N > 2, has relaxation time at most of order LY
at any fixed temperature, regardless of the boundary conditions. However, even establishing
that relaxation times grow at most at a polynomial rate with L is a notoriously difficult open
problem.

As a much more modest objective, in this note, we explore the presence of significant
topological effects in the simpler one-dimensional setting. In a one-dimensional system, it
is well known that the relaxation time is of order 1 at any fixed temperature. However, it
was recently observed in [4] that in the one-dimensional XY model (N = 2), when periodic
boundary conditions are imposed, as the inverse temperature S grows logarithmically with
the size L of the chain, topologically induced metastable phases emerge, which correspond
to distinct global winding numbers of the spin chain. When g increases as log L, the free
energy barrier between these states also increases linearly with 8, leading to hitting times that
are exponentially large in 8. As we will see, this system exhibits relaxation times that grow
exponentially with 8. This phenomenon is specific of the periodic chain, and cannot occur for
e.g. free boundary conditions. Indeed, it is a consequence of the fact that the global winding
number of a periodic XY chain is a topological invariant, and two distinct phases cannot
be connected by a homotopy, giving rise to a topological bottleneck. The main goal of this
paper is to show that these topological effects on the dynamics are not present when N > 3.
The point is that when N > 3, one can connect any two configurations of the spin chain by
a continuous deformation. In particular, by using a continuous version of the canonical path
method, we will show that, as a function of 8, the relaxation time of the one-dimensional
O(N) model with N > 3 can grow at most polynomially in a periodic chain. We will also
note that the same holds true for O (N) models, this time for any N > 2, if one takes free
boundary conditions instead.

1.1 Model and Results

Given integers N > 2, and L > 2, the one-dimensional O (N) model of size L, with free or
periodic boundary conditions is defined, respectively, by the Hamiltonians

L—1 L
HES) ==Y 8 Sy HE () ==Y 58 Sip. (1)
i=1 i=1

Here S; € SV~ denotes the i-th spin, S; - Si+1 is the usual scalar product for vectors in RN,
and we set Sy+1 = S to obtain periodic boundary conditions in H Eer(S). We write v for
Lebesgue’s measure on SV~ and let v denote the corresponding product measure on the
space 27 = (SV =1L of the spin chain configurations. Thus, the free and periodic boundary
condition O (N) Gibbs measure at inverse temperature 8 > 0 is given, respectively, by the
probability measures on €2;, defined as

exp (—,BHz(S)) exp (—ﬂHzer(S))

per
f \)L(dS), /’LL’ (dS) = per
zi A zr

[y p(dS) = v (dS), (2)
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where the partition function is defined, respectively, by
f, £
ZL.Pﬁer:/Q exp (_ﬂHLPel‘(S)) l}L(dS)
L

The Langevin dynamics is defined as the reversible diffusion process on 27, with infinitesimal
generator

L
f, 1 f,
il =2, (g D} — (DiHP) - Di> , ©
i=1

where D; denotes the gradient Vgnv-1 on the unit sphere acting on the i-th spin S;. The gen-
erator (3) defines a self-adjoint operator on L*(Qy, ,qu ﬂ) and L2(2, ,ufrﬂ), respectively.
For any smooth function f : Q7 — R, the associated Dirichlet form is given by

L
DU N =5 2 [ AP as) @
i:l L

and || - || denotes the vector norm. The spectral gap is defined by the variational principle

f ,per
. 0
PPer _ jnf 7f !

5
f Varf per(f) ( )

where Var Lper( f) = f P er( 2 — £, p;r( £)? denotes the variance functional with respect

to pL I /3 "and f ranges over all non-constant smooth functions on €2; . The relaxation time is
defined as the inverse of the spectral gap

TU (L, B) = (6)

W,
At any fixed § the one-dimensional nearest neighbor spin system satisfies exponential decay
of covariances uniformly in the boundary conditions [7]. Then it is not difficult to prove, see
e.g. [14], that the system has a uniformly positive spectral gap, that is there exists a constant
C(N, B) independent of L, such that

TSP (L, B) < C(N, B). 7

Here we are interested in detecting topologically induced slowdown effects on the relaxation
to equilibrium which could appear in the case where  grows with L. In particular, as shown
in [4], these phenomena do occur in the XY model (N = 2) in the case of periodic boundary
conditions, when f is at least of order log L.

We start by showing that in the case of free boundary conditions there is no topologically
induced slowdown, in the sense that the relaxation time is upper bounded as follows.

Theorem 1.1 (O (N) model with free boundary) Forany N > 2, L e N, and B > 1,
TL (L, B) < C(N) L*pN+D/2, ®)

where C(N) depends only N. In particular, for each fixed N, it grows at most polynomially
in B.
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We note that, in light of the bound (7), the above estimate becomes relevant only when
B grows with L. In this case, if § is at least C log L for some large C, as we discuss in
Section 1.2 below, a diffusive scaling of the relaxation time should be expected, and thus
at least qualitatively, the bound in Theorem 1.1 should be tight. In the case of periodic
boundary conditions, in agreement with [4], we show the following bounds quantifying the
topologically induced slowdown for N = 2. We note that, while [4] discuss the transition
time between metastable states, we study the relaxation time (which is well-defined also in
the absence of metastability); and while they describe similar phenomena one can not be
directly deduced from the other.

Theorem 1.2 (XY model with periodic boundary) Let N = 2. For L e N, and B > 1,
T (L. B) = CB*e L, ©)

rel
Sfor some absolute constant C. Moreover, for any L € N, there exists a constant c(L) depend-
ing on L such that for all B > 1,
AL, B) = c(L)f @=L VP, (10)

rel

where Cy is an absolute constant.

The lower bound (10) is based on a rather crude argument and provides no meaningful
L-dependance. However, as discussed in Section 3.2, the leading exponential term ¢# in
(9)-(10) captures the correct metastable behavior associated to the energy barrier of size 28
between states with winding number zero and states with non-zero winding number. We refer
to Remark 3.1 for the sketch of a finer energy-entropy argument providing quantitative L
dependance in the metastable regime > C log L.

Finally, we prove that there is no topologically induced slowdown for N > 3.

Theorem 1.3 (O(N) model on the cycle, N > 3) For N >3, L e N, and 8 > 1,
TY'(L, B) < C(L)B. (11)

rel

Moreover, in the case of the Heisenberg model (N = 3), one can take C(L) = eCLlogL for
some constant C not depending on L and B.

1.2 Discussion, Conjectures and Open Problems

We emphasize that these estimates are far from optimal and do not capture all features of
relaxation to equilibrium of the spin chain. However, they are sufficient to rule out the presence
of topological bottlenecks in the relaxation process for all N > 2 in the case of free boundary
and for N > 3 in the case of periodic boundary. Let us give some comments on our proofs.
Roughly speaking, for Theorem 1.1 we use the fact that the spin chain has a product structure in
the case of free boundary conditions, when one considers the “increment” variables S; 1 — S;.
This is achieved by a suitable change of variables that allows a convenient representation for
the Hamiltonian. In this setup, a simple tensorization argument applies and one obtains the
estimate (8) by changing back to the original spin variables. The explicit dependance on the
variable f in (8) is obtained by a quantitative bound on the spectral gap for a single increment
variable. The upper bound in (9) is obtained by reducing the problem to the free boundary
case via a perturbation argument. On the other hand, for the lower bound in (9) we use an
upper bound on the Cheeger constant. This is based on the choice of a suitable bottleneck
event that was already analysed in [4].
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The proof of Theorem 1.3 requires more work. We use a continuous version of the so-
called canonical path method, see e.g. [18] for a classical formulation in the discrete setting.
The main idea is to construct a path consisting of a continuous, energy decreasing transfor-
mation, which allows one to move any given configuration of L points on a sphere SV ! to
a configuration where all points lie in a small neighbourhood of a pole of the sphere. Once
the system is confined to such a neighbourhood, convexity considerations allow us to con-
clude the desired statement. Checking that such a construction is possible, and controlling
the entropy associated to the contracting path requires some non-trivial analysis. Note that
this can only work in the case N > 3, since for N = 2 it is prevented by the topological
obstruction discussed above.

Concerning dimension higher than one, in light of the above, it is natural to conjecture
that if one considers the O (N) model on the d-dimensional torus (Z/LZ)¢, then topological
bottlenecks are related to the homotopy structure. More precisely, one expects the relaxation
time to grow exponentially with 8 when there are some non-trivial homotopy classes of maps
from T¢ — SN

Indeed, when g is large the angle between two neighboring spins is small, and the discrete
configuration of the spin system looks like a continuous field, i.e., a map from T¢ to S¥ 1.
With this in mind, the dynamics of the spin system corresponds to homotopy of the continuous
field, and if there are several homotopy classes, then moving from one to the other requires
the creation of a discontinuity. The energetic cost of this discontinuity creates the topological
bottleneck.

While this description provides a good intuition to explain the results in this paper, in a
more general setting we expect such metastability to depend also on the Riemannian structure
of S¥~! and not solely its topology. Consider for example an hourglass spin state, which has
the same topology as S? but non-constant curvature. As in the O (3) model, the ground state is
when all spins point in the same direction. However, this system contains a metastable state,
where spins are placed, equally spaced, on the narrow part of the hourglass. This narrow
part looks like S!, and the metastable states will correspond to non-zero winding around
it. In this example, the energetic cost is due to the continuous transformation and not the
creation of discontinuities. We therefore see that endowing the same topological sphere with
a Riemannian structure other than the standard one (i.e., the homogeneous metric induced
by the scalar product in R3) could change the metastability properties.

This example suggests that homotopy classes of maps do not provide sufficient information
to describe the metastability properties of the system. To remedy this, introduce the following
energy functional. For M, M’ two compact Riemannian manifolds, and f : M — M’, let
E(f) be the energy of f:

£(f) = /M IDF I 4y d, (12)

where || ||, is the norm on the tangent space of M’ at p.

Extrema of the functional £, called harmonic maps, are well studied mathematical objects,
see e.g. [6]. Loosely stated, our general conjecture is that if one considers a model on some
graph G with spin taking value in the manifold M’, and if

e the graph G “approximates well” the manifold M (for example: the graph Laplacian on
G is close in some sense to the Laplacian on M),

o the Hamiltonian of the model is a “approximate discrete version” of the energy functional
£. This is the generic behavior of nearest-neighbor attractive interaction near low energy
states.
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Then, the existence of metastable states is equivalent to the existence of non-trivial local
minimizers of £. Specializing to the spin O (N) model, one obtains the next (more precise)
conjecture.

Conjecture 1.4 Let M be a compact Riemannian manifold, and define the energy functional
operating on f : M — SN~ as

&) = /M IDf (0)[1dx, (13)

where the norm is taken with respect to the standard Riemannian metric on the sphere.
Consider the O(N) model on a graph G discretizing M. Then the relaxation time of the
corresponding Langevin dynamics grows exponentially fast with B if and only if £ has non-
trivial (i.e., non-constant) local minima.

In particular, for the case of 74 with free boundary conditions, there should be no such
bottlenecks, that is relaxation times growing polynomially as a function of 8, for all N > 2,
since here the homotopy group is always trivial and the harmonic mappings are all constant.
However, we leave it as an open problem to obtain quantitative bounds in dimension d > 1.

While we believe that for M = S! or M = (0, 1) our methods could be used in order to
prove this conjecture, higher dimensional manifold will require much finer analysis. This is
due to the underlying assumption, that the spin configuration can be approximated in the low
energy regime by a continuous function.

An interesting example to study would be the case N = 4, M = S°: there are several
homotopy classes of continuous maps from S? to S (even countably many, by the Hurewicz
theorem), but the energy £ has no non-trivial local minima [6], so our conjecture is that there
is no metastable behaviour in this case.

1.3 Scaling Limit in Low Temperature Heuristics

We conclude this introduction with a brief informal discussion of the behavior of the system
for extremely low temperature, that is when S is large as a function of L, that could serve
as a heuristic guide for a more precise analysis in this regime. For the sake of simplicity, we
discuss the problem only for the XY model (N = 2) and give only a brief comment on the
case N > 3 afterwards. When N = 2 we may parametrize S; by a single angle X; € [—m, ]
and if B = B(L) is very large we may assume there is a well defined lift to R, so that our
variables are now X; € R, and the center of mass X; = % Zle X satisfies the relation

N
dX((t) = ——=dB(1), 14
() NG () (14)

where B(t) is a standard brownian motion. To see this, observe that by definition (3), the
dynamics is given by the SDEs

dXi(t):—Bxl.H(X)dt+de,»(t), i=1,...,L (15)

where the B;’s are independent standard Brownian motions, and the interaction has the form

H(X) = hij (Xi = X;) =Y hij (Xj = Xi).

i~j i~j
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where the sum ranges over the edges of some finite graph, and h;; = hj; = cos(-). The graph
is the segment {1, ..., L} in the case of free boundary conditions, and it is the L-cycle in
case of periodic boundary. Therefore,

Yo HX) =Y Y h(Xi—X)=-> Y h(X;—X)=0.
i i jri~j i jiirj
In particular, (14) shows that the center of mass relaxes on a time scale proportional to L.
Clearly, the above holds in any dimension d > 1, for the d-dimensional cube with side
L with free or periodic boundaries, provided L is replaced by L. This can be seen as the
starting point to establish volume order relaxation times estimates for the low temperature XY
model. However, one has to keep in mind that this center of mass motion can be interpreted
as a meaningful mode of the system, namely the global phase, only when all spins point in
approximately the same direction. As noted in [4], for d = 1, the condition 8 >> L suffices
to ensure that with large probability all spins are closely aligned, that is the winding number
is zero, and there is a well defined lift X as above. When 8 ) L, one needs to consider the
sum of all spins, and of the corresponding Brownian motions in R2, as actual vectors, which
makes the analysis considerably more involved; see [2] for a treatment of the mean field case.
Beyond the center of mass discussed above, one can also consider a stochastic PDE
describing the continuum limit of the full configuration of the system. Consider the field
¢ :S' x R — S! defined by

1
P T) = —=X\1/22) (L7T). (16)
«/Z [LE/27]
When B is very large, we may approximate dy, H(X) ~ X; — X;_1 — (Xjy1 — X;) =
Qm)?L732A¢ (&, 1), so, with t = Lt one has L™1/23x, H(X)dt ~ 4n’A¢ (£, r)dr.
Moreover, reasoning as in [11, Section 2],

—129BLg /27 (1)
dt

where W is space-time white noise on S! x R. In conclusion, from (15), the field ¢ satisfies
the Edwards-Wilkinson equation, or stochastic heat equation

dp(E, T) X AT A (E, T) + V2B W(E, ). (17)

L ~W(E 1),

We note that the continuum approximation discussed above should give a valid description
of the system, on suitable time scales, provided B grows at least logarithmically with L.
In particular, this suggests a diffusive time scale of order L? for relaxation, up to polylog
corrections, when the system has free boundary conditions, as pointed out after Theorem 1.1.
After this diffusive time scale, the system will relax by pure diffusion of the global phase.
If we consider periodic boundary conditions, then the situation is different, since one has to
impose the condition that ¢ (27, t) — ¢ (0, T) = winding number, and thus the equation (17)
is valid only within a given homotopy class, i.e. it describes the system for times much smaller
than the metastable times Tys ~ e2#~102(l) detected in [4], at which the XY chain changes
winding number. On the metastable time scale Tys the dynamics will involve a random walk
between the adjacent homotopy classes corresponding to &1 jumps of the global winding
number.

The above heuristic analysis can be in principle repeated for any N > 3, by working
with the local coordinates chosen to parametrize the sphere S¥ 1. One gets, independently
for each coordinate, a SDE for the center of mass and a stochastic heat equation as above.
However, because of the dependence on the choice of local coordinates on the manifold, the
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interpretation of these equations is no longer obvious in this case. We leave it as an open
question to identify the limiting process.

2 Free Boundary Conditions

In this section we prove Theorem 1.1. We start by choosing appropriate coordinates.

2.1 Coordinates

For N = 2, we parametrize the system using angles 61, ..., 61 € [0, 27 ] and by setting
Si = (cos(B1 + -+~ +6;),sin(@ + - +6)).

The uniform measure on (S!)% is then the image of the uniform measure on [0, 27]F by the
above mapping.
For N > 3, avector s € S¥—1 can be parametrized as

s = 5(0,v) = cos(0)e; + sin(f)v,

(eq,...,ey) is the canonical orthonormal basis of RN, § € [0, 7], and v is a unit vector
in the orthogonal complement of e;. Then, sampling s uniformly on S¥~! is equivalent to
sample v uniformly on {x : x-e; =0, ||x|| = 1}, and 6 proportionally to sin(9)N 2. For 6, v
as before, denote R, ¢ the rotation matrix (in the standard basis) rotating the plane spanned
by v and e; by an angle 6 so that R, ge; = cos(f)e; + sin(f)v. In other words, R, ¢ is given
by

Ryox =x+ ((cos(&) — 1x-e; —sin(@)x - v)el + (sin(@)x -e; + (cos(@) — 1x - v)v.

Let then v;,i = 1, ..., L be a sequence of uniform random variables on {x : x -e; =
0, Ix|| = 1},1et6;,i =1, ..., L be an sequence of random variables on [0, 7] with density
proportional to sin(6;)¥ ~2. Suppose v;, 0;,i = 1, ..., L forms an independent family. Set

Ri = Ry, 0, Si=Ryi...Rjey.
The first ingredient we need is the next simple Lemma.

Lemma 2.1 The sequence S;,i = 1, ..., L is ani.i.d. sequence of uniform random variables
N—1
onS .

Proof 1t is sufficient to check that for every realization of Ry, ..., R;—1, S; is uniformly
distributed on SN ~!. This follows directly from rotation invariance of the spherical measure
and the fact that R;e; is uniform on S¥—1. ]

The final ingredient we will need is a control over partial derivatives of S; with respect
to the angles 6;s and the vectors v;s. We note here that by %Si we mean the differential
J

with respect to v; when fixing all other variables; in local coordinates it is given by the

(N — 1) x (N — 1) Jacobian matrix, and we write H . H for the associated operator norm.

Lemma2.2 Let N > 3. Foreveryi, j €{l,...,L},

b
30; "

3
<1, ‘a—si <4. (18)

vj
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Proof If j > i, both quantities are 0 and there is nothing to prove. Otherwise,

H80 RXH =@-eN’+@x-v?<l

i

Frp
where x = R 11 ... R;eq, and we used the fact that e, v are orthogonal and of norm 1. Then,
for any x € R and / of norm 1,

1
lim — (RU+E]1 X — Ry gx) =
N0

= —sin(0)x - hey + (cos(8) — Dx - hv + (sin(@)x - 1 + (cos(8) — Dx - v)h,

so that for 2 of norm 1 in the tangent space of {y : y-e; =0, ||y|| = 1} at v, one has (as
€1, vj, h are orthogonal)

9 2
T
where again x = Rj4 ... Rie;. It follows that [|85; /dv;| < v/14 < 4. O

The interest of those parametrizations lies in the following identity: the Hamiltonian in
(1) becomes

L—1 L—1

L
— H{(S(,0) =) (Ri...Riyien) - (R ... Rier) = ) _(Riyier) -e1 = »_cos(f)),

i=1 i=1
19)
which gives a nice factorisation of the Boltzmann weight. The same identity holds for N = 2.
Therefore, we have that

L
F(8)e PHLOy, (dS) o / dodv f(S®, ) sin@)" > ] [ sin(@)" ~Zef @),
Qr i=2

where

e in the case N > 3, the right-hand-side integral is over [0, 71F x (SN _2)L, and we
identified {x : ||lx|| = 1, x -e; = 1} with SNV 2

e inthecase N = 2, the the right-hand-side integral is over [0, 27 1% and there is no variable
v.

Next, for N > 3, we introduce the probability measures pp, ..., pr on [0, 7] X SN2
given by

dp1(61, v1) o< v(dvy) sin(61)" ~2de,
dp; (6;, vi) o v(dv;) sin@)N 2P qg, i =2, ... L.
For N = 2, we use instead measures on [0, 277 ] given by
dp1(01) o< doy,
dpi(6;) x #0qe; i =2 ... L.

With this notation, we rewrite the expected value of some f : Q7 — R with respect to the
Gibbs measure /LfL as

1y (f) = @1 pi(f(SO,v))). (20)
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2.2 Poincaré Inequalities for Increments Measures

For f:[0,7] x {x : |lx|| =1,x-e; = 0} - R, which maps (0, v) to f(6, v), denote as
before % the partial derivative with respect to 6 and (.% the partial derivative with respect to
v (so that aa—uf(e, v) is a linear function from the tangent space of {x : |x|| =1, x -e; = 0}
at v to R). We also write Var p (f) for the variance of f with respect to a probability measure
Pon[0,7] x{x: |x]|=1,x-e; =0}.

When N > 3, the measures p; are product measures: the product of the uniform measure
on{x: ||lx|| = 1, x-e; = 0} = S¥ 2 and of ameasure on [0, 7]. We start by proving Poincaré
inequalities for these “elementary constituents” which in turn imply Poincaré inequalities for
the p;s. We stress that we do not try to obtain the optimal constants, but we need a reasonable
control over their dependency on the parameters.

We first prove the bounds used for N > 3.

Lemma23 Leta,b > 0. Let P, }, be the probability measure on [0, 7] with density propor-
tional to sin(0)%e” <O Then, for any f : [0, 7] — R smooth,

Varp, ,(f) < ci(a, b)Eqp(1f1),

where E, j, is the expectation with respect to P, j,, and

32ab(a+l)/2 22 144
T ifb=0. cia,0)= 2@t DY

ci(a,b) =
foﬁﬂ/z dxxte=~*/2 we

Moreover, ci(a, b) < 8n32“b(“+1)/2f0rb > 1.

Proof Start with b > 0. Let P = Py . Set C = [ dx sin(x)e? ™) Then,

T T
Varp(f) =555 | dx / dy(f (@) = f(7))? sin ()" < sin (y)e” <)
0 0
72’2 b4 b4 1
< dx/ dy/ dt| f'(tx + (1 — 1) y)|* sin® (x)e” <5 sin® (y)e? o5,
2¢2 Jo 0 0
We can then use that on [0, 7], g(x) = —a In(sin(x)) is convex and non-negative, therefore

g(x) +g(y) = gltx + (1 —0)y) +g((I —)x +1y) = gltx + (1 —1)y),
and so sin®(x) sin?(y) < sin?(tx + (1 —1)y). Also,
cos(x) 4+ cos(y) —cos(tx + (1 —1)y) <1,

as cos is non-increasing on [0, 7] and less or equal to 1. Using these and changing variable
toz =tx + (1 —t)y, we obtain

T T 1
/ dx / dy / di| f(tx + (1 — 1)y)|? sin® (x)e? ™) gin? ()l s
0 0 0

b 1 T dZ T 5 b
=¢ / dt/ 7/ dylf' ()1 sin®(2)e” 1, _ 1y yef0.0n]
0 0 0

b/
<2me’ / dz| f'(2)|? sin (2)e” <
0
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1
as [, dt% foﬂ dyl,_(1—1yef0,ix] < 27. Now,
T /2 a b \/En/Z
C > / dx sin®(x)e? 07" /2 > eb/ dx e obx/2 — 87/ dxxte /2,
“Jo - 0 2a 2apla+1)/2 0

as cos(y) > 1 — y2/2 for y € [0, 7], and sin(y) > y/2 for y € [0, 7/2]. Combining all
the estimates gives the main claim. The last point follows from (for b > 1)

Vb /2 ) /2 )
/ dxx%e /% > / dxe /% > 1/8.
0 1

The case b = 0 follows the exact same path with the lower bound C = f()” sin?(x) >
71“+1
22a+1 (a+1)" O

The complete spectrum and eigenfunctions of the spherical Laplacian are known, and in
particular its spectral gap is equal to N — 1 (see, e.g., [1, Section 2.2.3]).

Lemma24 Let N > 2. Let v be the uniform probability measure on SN~1. Then, for any
£ SN 5 R smooth,
Var, (f) < c2 (N (I DFIP).

with co(N) = +—
The last bound is for the XY model case (N = 2).

Lemma 2.5 Letb > 0. Let Py be the probability measure on [0, 27 | with density proportional
10 €2<3®)_ Then, for any smooth 27 -periodic f : R — R,

Varp, (f) < csWEp(1f'1%),

where E}, is the expectation with respect to Py, and
3./b 2
b4 . b4
msz>0, 03(0)—7.
Vb

Moreover, c3(b) < 2n3\/5forb > 1.

c3(b) =

Proof Leth > 0, C = fozn dxe?®%s™) One has
1 2 T )
Varph ()= TCZ / dx/ dy(f(x) — f(x + y))zeb(cos(x)+cos(x+y))
-

2
< 2C2/ dt/ dx/ dylf (x+ty)|2 b(cos(x)+cos(x+y))
-7

(we simply shifted the integration domain of y to the full period [x — 7, x 4+ 7] which
preserves the integral by periodicity). We can then use

cos(x) 4+ cos(x + y) —cos(x +ty) <1

asy € [-m, ], and proceed as in the proof of Lemma 2.3 to obtain
2
Vaer(f) = 2C2 / dt/ dxf dy|f (x +ty)|2 b cos(x+ty)
-7
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27.[3617 2w 7T3€b
— dx / X 2€bcos(x) — E 72
e /0 17l T EP)

where we used periodicity in the second line. Now, as in the proof of Lemma 2.3, C >

treats the case b = O (there, C = 2m). ]

/ nﬂ eb=bx*/2 — f/—% f:/j]?:n e/ 2, which gives the claim. A simplified version of the above

We end this section by noticing that we have everything we need to control ;LfL = ®iL=1 Dis
as the p;s are themselves product of one or two of the above cases. More precisely, for
f [0, ] x SN2 5 R smooth (N = 3),i > 2,and (6,v) ~ p;, by the tensorization
property of variance,

Var), (f) < PN—28 ® v(Varv(f(O, v)) + Varprzwﬂ (f@, v)))
< Py_ag @ v(ca(N = 2v([18u O, WIP) + 1 (N =2, BYEn—2,5(30 f (0, v)|P))
= c2(N = 2)p: (13 f O, V)I) + c1(N =2, B)pi (196 £ (6, v) ), 1)

where P, j is the measure of Lemma 2.3. A similar bound holds for i = 1.

2.3 Proof of Theorem 1.1

Introduce

BN max(c3(8), c3(0)) it N =2, )
T I max(er (N =2, B), c1 (N —2,0), ca(N —2)) if N > 3.

By Lemmas 2.3, 2.4, and 2.5, for g larger than 1,
(B, N) < g3aN+1gN=D/2, (23)
The upper bound in Theorem 1.1 is a consequence of the following Lemma and of (23).
Lemma 2.6 Let f : Qp — R be smooth. Then,
Var,r (f) < B17¢(B, N)L* D 4(f f).
where c(B, N) is given by (22).
Proof Since MfL is the product measure (20), we have that by the tensorization of variance,

L
VaerL(f) < ®l~1‘:lp,~(ZVarp[ (f(@l, v, ..., 00, UL))).

i=1

Applying (21), one obtains
L
Var,e (f) < (B, N) @5y i (100, £12 + 185, £1)). 24)
i=1
Moreover, by the chain rule, for f : (SN _l)L — R smooth, one has

L
3y, £(S©0.v)) =" D;f(S©) - 0, SjO1, V1, ..., 0}, ;).

J=i
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and

L
3, £ (S0, v)) = ZDjf(S(Q)) - 09, S (01, v1,5 ..., 05, v)).
j=i
Observe that by our choice of coordinates (Lemma 2.2), forany L > j > i > 1,

106, S; (B1,v1, ..., 0L, vl <1, 10y, 8;O1,...,0L, v <4.

Therefore, by Cauchy-Schwarz,

L L L
(10, £12 + 1o, £12) = 32 (16 3 U0 £I2 + LY 1D £1P)
i=1 i=1 j=i j=i
L
< 170> " |IDi fI*.
i=1
Plugging this in (24), and recalling (4) concludes the proof. O

3 XY Model on the Cycle

In this section we prove Theorem 1.2. We start with the proof of the upper bound.

3.1 Upper Bound

The proof is based on the upper bound for free boundary conditions in Theorem 1.1 and
simple comparison between the free and the periodic boundary condition system. The first
observation is that from the definitions (1)-(2) and the fact that |S; - S;+1| < 1 it follows that

per per

the relative densities du! /dpb™, dub™ /dul satisfy

per f

dul zy at| z
Ll < ZE exp(p), LI < exp(p). (25)
duy ~ ZL,ﬂ duy ~ ZL’ﬁ

At this point, for any smooth function f : Q7 — R one has

Varper () = inf 1 ((F = %) = 1 ((F = i, ()

zt zt
<~ o (B) L ((f = ph (M) = —5f exp (B) Var,e (f).
ZL.ﬂ ZL,ﬁ
Similarly,
Eer
DLy ) = 7= exp (B DY(f. ).
L.B

Therefore, from Theorem 1.1 it follows that
Var e (f) < e CQL2 D (S, ).

This implies the upper bound (9).
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3.2 Lower Bound

We use the variational principle (5). In order to construct an appropriate test function, we
follow [4], where a proxy for the winding number of the spin chain was defined as follows.
Let S; € S! denote the i-th spin, with Sy = Sj, and write [0] for the representative in
the interval (—m, w] of any 6 € SLLIf S € (SHL is such that Sit1 — Si € St \ {m} for all
i =1,..., L, define the function

1 L
W) = =} [Sis1 = Sil. (26)

i=1

Because of the periodic boundary condition, W is an integer, which can be interpreted as
the winding number of the spin configuration. Moreover, the function W is continuous in its
domain of definition D given by

D:{SG(SI)L:S,~+1—S,~6S1\{n},i:l,...,L}. 27)
Next define the events

B={SeD: W) =0}, (28)
As={SeD: W(S)=0and S; — S;j41 € [r —§, 7 + §] for some i}. (29)

We let f : (ST — R denote a C* function such that f = 0 on B, f = 1 on B \ As
and such that || D; f|lcc < Cs, where Cs = O(1/§) is a constant independent of 8, L. Since
D; f(S) # 0 implies that S € As, using this function f in the variational principle (5) one
obtains

per

1 wy g(As)
per 2 LB
gap; g < 5L — 55— (30)
LE=p Varlzej3 f
Moreover, by definition of f one has
Varyy f = upp(B\ Ay (B°). (31

It remains to estimate ,ufrﬁ (Ajs) and the probabilities in (31).
For § > 0, define the events

By = {8, — ) e[-8,8]foralli=1,...,L},
By ={S;— S} e[-8,8]foralli=1,...,L},
where the configurations S, S!, seen as variables in the complex plane, are defined by
S0=1, Sl=et,  jefl,...L}
Observe that, for small enough § = §(L) depending on L,
BY € (W =0}and B} € (W =1},
and, writing H(S) := HI" (S),
H(S)>2-68>—L, SEe€As,
H(S) < —(1—8)L, SeBy,
HS)<-L+C@E+LYH+C8L, SeB),
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for some absolute constant C > 0. With the notation vol(A) = | 4dS forany A C Q,
Q = Q7 , we obtain

vol(BY)eP1—3ML < f e PHSdS < vol(Q)ePL.
Q

Therefore, writing u = Miejg’

J1,€77710dS vol(ag)ePE—-E)
Joe PH®AS ~ Vol(Bg)eﬂ(l—Bz)L

_ vol(As) B8 (L+D)
vol(Bg)

n(As) =

=Cs, e—ﬁ(Z—Bz(L—H))’

where Cs, 1, is a constant depending on §, L. We can also estimate

fBg? e PH®)ds Vol(Bg)eﬁ(l_‘Sz)L

BY) =
B = T ®Aas T vol(@ef

0
=cspe P,

where c;. 1. is another constant depending on §, L. Finally,

fBl e PHS) g VOI(B(Sl)eﬂ(L*C(5+L7])*CBZL)

Bl = 8 > s
W) = s vol(Q)ePL

which implies

M(Bal) > s Le—(C(5+L_1)+C82L)ﬂ7

for some other constant cs ; depending on 6, L. Summarizing, we obtain the following
estimate.

Proposition3.1 Forall L €N, § =8(L) < L™, forall 8 > 1,

n(As) o nAy) Cs.pe”CCoL ™8,

er er — = 32
U (B\ As) Ty (BE) ~ pu(BY)u(B)) (32)

where Cs 1, is a constant depending on §, L, and Cy is an absolute constant.
The lower bound in (10) now follows from (30)-(31) and Proposition 3.1.

Remark 3.1 (A finer lower bound for 8 > C log L) The estimate in Proposition 3.1 captures
the correct energy barrier of size 28 up to O (L™!) corrections, see the matching upper bound
(9). However, it provides no quantitative estimate in terms of the system size L. To resolve
this, we observe that Proposition 3.1 can be considerably refined by adapting the analysis
from [4]. Rather than giving an explicit derivation, we content ourselves with the following
observations. One can use the arguments in [4, Section 4] to prove that for all L and g > 1,

per per

1 1
B) > —, B¢) > — ¢~ CoB/L
HLpB = B = Cov/BL

)

where Cy is an absolute constant, and that for any § € (0, 1) one has

b (As) < CopLbe P12,
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From these bounds it is not difficult to check that for an appropriate absolute constant Co, if
B > CologL, L > Cy, then for all fixed § € (0, 1), the left hand side of (32) is bounded
from above by

C053/2L38 efﬁ(zfsz/zfcorl).

Thus, from (30) and (31) one arrives at the following relaxation time lower bound: for all
8 € (0, 1), there exists a constant ¢s > 0 such that for L > 1/cs, and 8 > Cplog L, for an
appropriate absolute constant C, one has

T(L, B) = csp™ 2L @0 (33)

rel

4 O(N) on the Cycle

Here we prove Theorem 1.3. In order to simplify notation we omit some subscripts and
superscripts; we only discuss in this section the relaxation time for fixed N > 3, and fixed L
and B, with periodic boundary conditions.

4.1 General Strategy
In order to bound the relaxation time from above, we will show how to bring a configuration,
using a canonical path method, to a small neighborhood where the hamiltonian in convex.

Definition 4.1 The arctic is defined as the set of configurations where all spins are in the ball
of radius arccos(0.99) ~ 0.02 x 2 around e;:

A={SeSVNl:5.¢ > 099, (34)
The following is a simple consequence of our definitions.
Fact 1 err is convex on A.

Definition 4.2 Fix an open set U C Q. A path from U is a continuous function ® : U x
[0, 1] — 2. We define the path’s energy and entropy respectively as

AHe(S, 1) = H*' (0(S, 1)) — HP'(S), (35)
d(P(-,t
A Entg (S, 1) = log ‘M , (36)
dUL
where ‘% is the density of the push-forward measure of vy with respect to vy ;

in local coordinates it is given by the determinant of the Jacobian matrix. The free energy
barrier of the path is defined by

AF[®] = sup sup AHe(S,t) — B 'AEnte (S, 1). 37
t€(0,1] SeU
The speed of the path is defined by
v[®] = sup sup [|3;P(S, ), (38)
tel0,1]1 SeU
where || - || denotes the euclidean norm

L
1> =D 1517,  &=(1.....6) eRE.
j=1
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The paths to be considered below are almost everywhere differentiable, so the above is well
defined as an essential supremum.
Lemma4.1 Let Uy, ..., Uk be some finite collection of open subsets of 2, and ®1, ..., Pk
a collection of paths, ®; : U; x [0, 1] — Q. Assume:
) UL, ui =«
(2) ®;(S,0) = Sand ®;(S,1) € Aforall S € Uj;.
(3) AF :=sup; AF[®;] and v := sup; v[®;] are both finite.
Then
Tt < 3K°B(° P20 + PR u(A)) (39)

In particular; if the energy barrier sup; sup,¢(o 1) SUpsey, AHa, (S, 1) is non-positive then
the B-dependence of the relaxation time grows at most linearly.

Proof Fix some test function f :  — R, and use the notation ®;(X) = ®;(X, 1). The
variance of f with respect to u := ,u[L’ejS satisfies

2Vark (f) = / dp(X)dp(Y)(f(X) = f(¥))?

K K
=> > / dpu(X)dp() Ly, X)Ly, V)(f(X) = f(V)
i=1 j=1

4

=

4

K
> / du(XOdp (V) Ly, (X)L, (Y)
1j=1
X (FO0 = F(@i(0) + F(@00) = F(®;(N) + F(®;(1)) = F(¥))?

K K
<3y Y / dp(X)dp(V)y, X)Ly, (V) (F(X) = f(Di(X)))

i=1 j=I

K K
= / dp(X)dp (V) Ly, (X) Ly, (V) (f (9; (X)) — f(@,(¥)))?

i=1 j=1

K K
+3> ) / dp(X)dp(Y) Ly, X)Ly, (V)(f(@;(¥)) — f(¥))?

i=1 j=1

K
<6KY f dp(X) Ly, (X (X) = f(@;(X))?
i=1

K K
+3) ) / dp(X)dp(V) 1y, )Ly, (V) (f (@i (X)) — f(P;(Y)))
i=1 j=I
K

K K
=6KY (;+3)_ ) () ; (40)
i=1

i=1 j=1

We start with the first term. For any i and X € €,

2
1 L
(f(X) = f(@;(X))* = (/o dry " Djf(®i(X, 1) - (3P (X, t))j)) (41)

Jj=1
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1 L
< ”2/0 dt Y D f (@i (X, )], (42)

j=1

where D; denotes the gradient on the sphere SN=1 acting on the j-th spin. Plugging this into
(I), recalling the definition of y, and then changing variable to X' = ®;(X, 1), yield

! L
W =0? [ ar [ aueonn, 0 Y10, f@ix.opl? 3)
=1
v [l —BH(®;(X.0)+PAHy, (X.1) - 2
= 2 [ ar [avene e o 5oy, 60 37 D, X1 @)
=1
v ! /\ _—AEnte, (X,1) —BH(X') BAHg, (X,1) = N2
=§/0 dtfdv(X)e o, (X0 =BHO BB H X0 (3) S 1D £ (X
=1
(45)
1 L L
< v2POF /0 dr f du(xX) S ID; FOOIE = 2P S wiDy 1) d6)
j=1 j=1
= v’ 2D (S, ). (47)

For the second term, the change of variables X' = ®;(X,1),Y = ®;(Y,t) leads using
the same calculation to

(ID); ; < PAF / du(X)dp(YN1aX) LAY ) (f(X) — fF(Y)* (48)

This last integral equals w(A)? times the variance of f under the conditional measure 1 (-|A).
Since on A the Hamiltonian is convex, and since €2 has positive curvature 1, the Brascamp-
Lieb inequality for w(-|A), see e.g. [12, Theorem 1.2], tells us that:

L
1
3 / dp(X|A)du(Y1A)(f(X) = fF())* <> udIDj fIPIA). (49)
j=1
We conclude that
L
(D) ; < 272 10(A) Y " u(ID;j f11%) = 2B w(AYDY(f ). (50)
j=1
Together with the bound (47), this ends the proof of the lemma. O

4.2 Constructing The Path: a Soft Argument for Any N > 3

We will construct paths to be used in Lemma 4.1 in three parts: first, we use the deterministic
flow in order to bring the configuration near a critical point, where all spins are on a single
great circle, defined as the intersection of the sphere with a 2 dimensional plane. Then, we
pull the spins to a point perpendicular to that great circle. Finally, we rotate the configuration
to the arctic. See Figure 1.
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AT
- )

Fig. 1 Illustration of the path \W. In the first step all spins are brought to the vicinity of a great circle. Once
there, we pull all spins towards a single point

Step 1: Approaching a Great Circle

Define the deterministic flow ¢ : 2 x R — Q as the solution, for each S € , of the
differential equation

w = —DH(p(S. 1)), oY

@(S,0) =S, (52)

where we use D = (D) j=1,..., . for the L-vector of sphere gradients D;.

.....

Claim 1 Let S be a stationary point of the flow. Then the spins Sy, ..., Sy all belong to the
same great circle.

Proof By explicit calculation in RV,

—DiH(S) = D;i [Si—1 - Si + Si - Siv1] = Si—i — (Si—1 - $)Si + Si1 — (Sig1 - S)Si
=S8i—1+ Siv1 — (Si—1 - Si + Siv1-8)Si-

Therefore, D; H (S) = 0 implies that S;4 is in the linear span of S;_; and S;. It follows that
if DH(S) = 0, then this holds for all i, and therefore all the spins belong to the same 2D
plane. O

Step 2: Pulling Towards a Single Point

Once all spins are on a great circle, we move them to a point s perpendicular to that circle.
First, we define the flow ¢ that does that. We then need to show that the energy is decreasing
along the flow. This is done in two parts—initially, spins that were on one side of the great
circle move closer to it, and the others move away. After a short period, the spins on the
"wrong" side cross the great circle, and in the second part of the motion all spins are on a
single hemisphere. Claim 2 shows that if we start e-close to a great circle, after time 2¢ all
points are going to be at the same side of the circle.

We would then like to show that the energy is decreasing up to time 2¢. This unfortunately
is not always true—if all spins are in the hemisphere opposite to s, then initially distances
grow and the energy increases. This problem, however, could be easily solved by replacing
s with —s, which is now in the right hemisphere. In Claim 4 we show that whenever we start
e-close to the great circle, pulling the spins to s or —s results in energy decrease.
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Finally, Claim 5 shows that once all spins are in the same hemisphere as s, the energy is
decreasing.

Definition 4.3 Fix two spins s, s’ € SV ~!. We define the function ¢ : S¥ =1 x R — SN~!
as the flow on the sphere given by the following equation in RV :

d
§¢S(S/» N=s— (o' 1) )P 1),
¢ds(s',0) =5,
For a configuration S = (Sy, ..., S) we write ¢ (S, 1) = (¢s(S1,1), ..., ds(SL, 1)).

Observation 1 Ifs’ is perpendicular to s, we can solve explicitly

1
' t) = tanh(¢ ’
¢s(s', 1) an()s+cosh(t)s

which shows that lim,_, o ¢5(s’, t) = s. This last fact is true in general—we can always
choose s and ty such that

1

" t) = tanh(¢t — ¢ — 5§,
¢s(s’, 1) = tanh( o)s+cosh(t_t0)s

by taking § perpendicular to s in the plane spanned by s and s', and determine ty using
¢s(s’,0) = 5".

Claim2 Forany e < %, if|s-s’| < ¢ then ¢5(s',28) - s > 0.

Proof Note that d
3 (6D 5) =1- @609 >0,

so it is enough to prove that ¢s (s’, ¢) - s cannot remain in the interval [—¢, O] forall ¢ € [0, 2¢].
But assuming it does,

d 3
3 (B6L 0 =1= @6 097> 7,
and therefore ¢ (s’, 2¢) -5 > —& + % 26 =5>0. O

Claim3 Fixs € SN~ and a configuration S where all spins are on a great circle perpen-
dicular to s. If not all spins are aligned, then

d2
— H(¢s(S, ¢ 0.
@S| <
Proof Since all spins are perpendicular to s, we can write explicitly, setting s = (s, ..., s) €
Q,
S, t) = tanh(z ,
¢s(S, 1) = tanh(r) s + cosh()

1
H(@5(S,10) = 5 3 18:(8, )i = b (S, i1 + const.
= EmH(S) + const.
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(s, 1) = =200 s
ar 1@ (5, ~ cosh(t)?

d? 2sinh(1)* — 1
@H(%(sa 1) = T cosh()t

H(S).

In the following we use d (-, -) to denote the geodesic distance on the sphere.

Claim4 Fixs € SN~ and a non-constant configuration S° where all spins are on a great
circle perpendicular to s. There exists & small enough (depending on S°), such that for all S
satisfying d (S;, S?) < ¢ foralli, either H(¢s(S, 1)) or H(¢p—5(S, t)) (or both) is decreasing
fort € [0, 2¢].

Proof We consider two cases. The first is when %H(qﬁs (S,0)) <0.Since ||%¢S ', Dl <1,
during the time interval [0, 2¢] all spins of S remain at a distance at most 3¢ form S°.
By the last claim (‘;TZZH (¢S(S0, 0)) < 0, hence we may choose ¢ small enough, such that

éiTzzH(qbs(S’, 1)) < 0 for all S’ in a 3-neighborhood of S°. Then %H((i)x (S,1)) < 0forall

t € [0, 2¢].
In the second case 3 H (¢(S, 0)) > 0, butthen by symmetry of the flow & H (¢_,(S, 0)) <
0 and we are back to the first case. O

Claim5 Fixs € SV~ and a configuration S, such that s - S; > 0 for all i. Then H (¢ (S, 1))
is a decreasing function for t € [0, 0o].

Proof For all i, denoting s = (s, ...,s) € (SN-HL,
—DiH(S)-(s—= (558 =8i—1-(—(S-5)8)+ Sit1-(—(S-5)S)
—(Si—1 - Si + Sit1-8) Si - (s = (Si-5)Sh)
=8 1-85—=(85 )8 -Si—1) +Sit1-5—= (S -9)Si - Siv1)-
Therefore,

Z —DiH(S) - (s = (§-5)S);

= Z(ZSi) .S = (Z(Si . Si—l)Si) .S = (Z(Si : Si+1)Si> .S

=Y (= (Si-Si)S) s+ ) (1= (S; - Six1))Si) -5 > 0.

Note that if s - S; > 0 then at all positive times ¢;(S, r) > 0 (since spins always get closer
to s). Therefore we can plug ¢, (S, t) for S in the above inequality, and obtain:

d _ L 08,0
GH@(S.0)=DH - ==

= DH - (s — (#(S.1) - D$(5.1)) < 0.

Step 3: Combining all Parts of the Path

Definition4.4 Fix T > 0, s € S¥~!, and a configuration S where all spins are on a plane
perpendicular to s. Let Uy ¢ o be the set of configurations §, such that:

@ Springer



96 Page 22 of 28 P. Caputo et al.

(1) If 8% is constant, then under the deterministic flow ¢, all spins ¢(S, T); are at distance
at most arccos(0.99) from S°.
(2) If 89 is not constant, for ¢ = £(S?) given in Claim 4,

(a) all spins ¢(S, T'); are at distance at most & from S?; and
(b) H(¢s(S, 1)) is decreasing for ¢ € [0, 2¢].

Lemma4.2 Fix T, s, S° as in definition above. Then there exists a map Wr 50t Ur g 50 X
[0, 1] — 2 such that:

(1) Wy 50(S,0) =S and Wy ¢ (S, 1) is in in the arctic A.
(2) H(V(S,1t)) is non-increasing for all t.

Moreover, v[Wr ¢ 0] and supg , |A Enty (S, t)| are finite.

Proof If SY is non-constant, take

t e
t e

[t @I

@(S,3T x 1) [0.1].
Wr 55008, 1) = 1 ¢ (9(S.T).C x (t — §)) [3.3].
]3

s (65 (9(S,T),C/3), 1 —3) t€l3
where i is a rotation from s to e; with speed 3d(s, e;). C should be chosen such that
tanh(C/3 — 2¢) is close enough to 1, guaranteeing that we end up in the arctic.

If SO is constant, we skip ¢ and take i to be a rotation of S0toey.

The speed 9; ¥ can be calculated explicitly on each part of the path—in the time interval
[0, 1/3] it is given by % ||DH || which is bounded on the entire 2. During [1/3,2/3] it is
bounded by % since each coordinate of 9;,¢ (S, ¢) isbounded by 1, hence [|0;¢ (S, 1)|| < VL.
Finally, in the last interval the speed is bounded by 37+/L, since during time 1/3 each
coordinate crosses distance at most 7.

In order to show that the entropy is bounded we use the fact that for a flow given by an
equation of the type

— )

H (S, 1) = f(D(S,1)),
O(S,0) =S,

the entropy production is the divergence of f:

t
AEnte(S, 1) = /divf(¢(S, u))du, (53)
0

see, e.g., [19, Section 8.2]. In the first part of the path div f is bounded by 37 sup |AH|, in
the second part by NL, and in the third part it is 0. Since composing the paths results in
adding the entropies, the overall entropy is bounded. O

Proof of Theorem 1.3 Since all limit points of the deterministic dynamics are on a great circle,
any configuration § belongs to some set Uy 0. These are open sets, and €2 is compact,
therefore there exists a finite cover Uy, ..., Ug. We set fori = 1, ..., K the function ®;
to be equal W ¢ o, for T, s, S such that U; = Ur 4. s0. The hypotheses of Lemma 4.1 are
then satisfied, with finite v and A Ent (which do not depend on ), and AH < 0. ]
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4.3 Explicit Construction for N = 3

When N = 3 weare able to construct the path directly, without using a compactness argument.
This enables us to obtain an explicit (though not optimal) estimate on the constant C(L) in
Theorem 1.3.

The path consists of three parts: first, we align the spins so that they fall close to a plane.
We then contract the spins towards a well chosen pole. This second step is where the crucial
difference between O (3) and O(2) enters. Finally, we rotate the whole configuration to get
it close to e and into the arctic.

The three steps are summarized in Lemmas 4.4, 4.5, and 4.6. We will need a few prepa-
rations. The first is stating that “if all spins are close to some great circle, they are also close
to a great circle in a fixed finite set of great circles”.

Lemma 4.3 There exists C > O such that for any € > 0, one can find K < Ce~2 integer, and
aset {vy,...,vg} C S? such that for any L, and any collection Sy, . .., Sy € S? satisfying
|S;-s| <eforalli € {1,...,L}and some fixeds € S?, there exits k € {1, ..., K} such that
|Si - vk| <2eforalli e{l,...,L}.

Proof Let e > 0. Let A C S? be such that for every s € S2, there is v € A such that
|s — v| < €. One can find such a set containing at most Ce 2 points with C universal (for
example, by projecting on S? an €/2 mesh-size grid on the boundary of the cube of side 2
centred at 0). Then for such a set A, for any s € S2, there is v € A with |v — s| < €. For this
v,onehas |S-v| < |S-(v—25)|+|S-s| <e+]|S-s|forevery S € S%, so

S -s]<e = |S-v| <2,

which gives the claim.

Fix sin(%) > ¢ > 0,and let Ve = {vy,...,vg} C S? be a set whose existence is
guaranteed by the previous Lemma (with K < Ce™2).
For s € S?, define then

Di(e,s) ={SeQr: IS -s|<e Vi=1,...,L}.
Define also
Qf(s,f) ={SeQr: S -Es>1 —2arcsin(e)2, Vi=1,...,L}.

The three steps are then represented by the following three lemmas. For the first two of
them, the precise construction and proof is given in the next subsections.

Lemma 4.4 The application ¢ : Qp x [0, t] — Qp witht = L — 1 — €, to be constructed
in Section 4.4, is such that

(1) ¢(S,0) = Sand ¢(S, t) € D1(€, v) for some v € V;

(2) t = (S, t) is continuous, and piecewise differentiable;

(3) t — err(ga(S, t)) is non-increasing;

(4) ¢S, DII* < 4r’L;

(5) letting f,(S) = @(S, 1), one has ’d‘g%
image of f;.

L
= (%) for every t € [0, 7] and S in the

Lemma4.5 Let s € S2. The application ¢s : Di(€, s) x [0, /2 — arcsin(e)/2] — 1, to
be constructed in Section 4.5, is such that
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(1) ¢s(S,0) =S and ¢5(S, /2 — 2arcsin(€)) € Qt(s, e)UQ; (s, €);

(2) t — ¢s(S,t) is continuous, and differentiable;

(3) t — Hzer((ps (S, 1)) is non-increasing;

(4) 16s(S. D> < 4nL;

(5) letting f.(S) = by(S, 1), one has ‘%
S in the image of f;.

< 2L,f0r allt € [0, m/2 — 2 arcsin(€)] and

Lemma4.6 Lets € S2. There exist T = (s) € [0, ], and 5 : Q{(s, €) x [0,7] - @
such that

(1) ¥s(S,0) =S and y(S, 1) € Qf (1, €);
(2) t — Ys(S, 1) is continuous, and differentiable;
(3) t > H]" (Ys(S, 1)) is constant;

(4) (S, O|* < 4m’L;

(5) letting f,(S) = 5(S. 1), one has |£Up21L

of fi.

=1 foreveryt € [0, t] and S in the image

Proof of Lemma 4.6 Simply set 7 to be the angle between s and e;, R, the rotation of angle ¢
in the plane spanned by s, e; (with positive direction from s to eg). Setting ¥ (S, t) = R/(S)
does the job. O

In the next sections, we prove Lemma 4.4 and 4.5. We then use them together with
Lemma 4.1 to bound the spectral gap in Section 4.6.

4.4 Local Alignment: Proof of Lemma 4.4

The path we will use will align S1, S>, S3 by rotating S, around the axis spanned by S to end
on the geodesic between S; and S3, then align Sy, ..., S4 by rotating the pair S», S3 around
the axis spanned by S so that S3 ends on the geodesic between S| and S4, and so on and so
forth. We will first consider a sequence of mappings which is better expressed in a suitable
choice of coordinates. For 1 < k < L + 1, consider the following coordinate system. Let
vy = S1. If Sg ¢ {vy, —v1}, let

Sk — (Sk - v)vi

V=

V1= (S -v1)?
otherwise, let v> be any (fixed) norm one vector orthogonal to v;. Let then v3 be any vector
such that (v1, v2, v3) is an orthonormal basis. Express then a point s on the sphere as

s=(s-v)v ++v1 = (s-v1)2cos(@)vy ++/1 — (s -v1)?sin(@)vs
with 6 € [—m, ) the angle between v, and the projection of s in the (v, v3)-plane (so that

0 = 0 when s = S;). Write u; = S; - v; € [—1, 1], and 6; for the angle 6 corresponding to
s = §;. With this choice of coordinates, one has

Zs Sis1 = uuz+1+\/ ub /1 —u?, cosd; — 0i11)),

where 6; = 0.
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Define the path to be
( s )) Si ifk<i<L+1,
1), =
7 b uivi 41— uFcos@; — t0—Dvy + /1 — uFsin(@; — 6 vy if 1 <i <k
As, in the chosen coordinates, dvy, (S) = dv(S1) [T~ dv(S:) [1-2; du;d6;, one has

‘d(ft)#VL‘ _ 1
dvy, 1—+¢

where f;(S) = ¢k (S, 1).
Note then that

k—1 L

—H}" (@i (S, 0) =Y (ox(S, ), - (9r(S, D),y + D Si - S

i=1

—k
k-2

= Z Si -+ Siv1 + (uk—1ux + MMCOS((I —D6k-1))
i=1

L
+ Z Si Sit1-
i=k

As the angles are in [—7, 7], —H}* (¢x(S, 1)) = —HL™(S).
One has that ((pk(S , 1)) 1 18 in the plane spanned by S; and Sk, and that the distance to
that plane of (gx(S, 1 —€)),_, is at most

|(<P§k)(1 —€)),_; - V3l <sin(em).
Letto =0, % = 7x—1 + 1 — €/L. Define
®(S,0) =S,
0(S, 1) = ok (9(S, h—1), t — Th—1), t € [Th—1, T].

This defines a continuous, and piecewise differentiable function of ¢+ € [0, 7 _1], where
1.1 = L — 1 — €. By the triangle inequality, the distance of (¢(S, t7,—1)); to the plane
spanned by S1 and Sy, is at most €. By the previous observations, the Hamiltonian is decreasing
in t and
‘d(ft)#VL ‘ < (LEil)L,
dl)L

where f;(S) = ¢(S, 1).
It remains to prove the bound on ||¢(S, 1) |I%. On each time interval [t4_1, 7], the mapping
is a rotation of the k first spins around the axis spanned by Sy, so ||¢(S, t) |2 < 4n*L.

4.5 Contraction Towards a Pole: Proof of Lemma 4.5
Fors € S?, parametrize S € Q by (6,0') € (-5, 51xI0, 27k via S; = cos(5 +6;)s +
sin(% + 6;) cos(@i’)vl + sin(% + 6;) sin(Gi’)vz where (s, v, v2) form an orthonormal basis

of R3. Define the configuration X; = X,(S) = X,(0,0") via

(X10,0)), = cos(% 40+ + sin(% +6; + 1) cos(®)vy + sin(% + 6 + 1) sin(0))v,
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Using sin(5 + a) = cos(a) and cos(5 + a) = — sin(a), one obtains

L
—H*'(X,(0,0")) = Z sin(6; + 1) sin(; 41 +1) +cos(b; +1) cos(B; 1 +1) cos(0; — 6 ).
i—1

So, as sina cos b + sinb cosa = sin(a + b),

L
d .
dr Eer(xz(Q, 0") = E sin(6; + 041 + 26)(1 — cos(6] — 67, ))).
i=1
Moreover,
d2 per / - / /
T H; (X:(0,0) =2 E cos(; + ;11 + 2t)(1 — cos(6; — 6;,1)).

i=1
First observe three things:

(1) if 0 < 6; +1t < /2 forall is, then — % H* (X,(0,6")) = 0;
(2) if —/2 < 6; —t < 0 for all is, then —EH'Z‘”(X_t(e 6")) > 0;
(3) if |9| < g forall is and t < %, cos(6; + ;41 + 2¢) = 0 for all is and so

-4 Pe‘(Xt(e 6') = 0.

When S € Dj(e,s), we have |0;| < arcsin(e). Therefore, by our constraint on €, the
sign of ——err(X 1(0,0") at t = 0 determines the desired monotonicity for either ¢ €
[0, r/2 — 2 arcsin(e)] or —t € [0, w/2 — 2 arcsin(€)]: indeed, the third observation above
gives the monotonicity for all || < 7/8, and the first two observations show the monotonicity
for |t| > /8 since |0;| < arcsin(e).

We can now construct the path ¢y as follows:

o If S € Di(e, 5) is such that — & H}* (X (S))|,_, > 0, set

@5 (S, 1) = Xi(S),

fort € [0, w/2 — 2 arcsin(e€)].
o If S € Di(e, 5) is such that — & H' (X (S))|,_, < 0. set

Gs(S. 1) = X—(S),
fort € [0, w/2 — 2 arcsin(e€)].

Ase < sin(f—()), the first three points of Lemma 4.5 are obvious (the first one follows from

(¢s(S,1)); - s = cos(mr/2 + 6; = t) depending on the case). To obtain the one-before-last,

observe that the transformation is a rotation of each coordinates, so ||@s (S, £)||* < 472L.
The last point of Lemma 4.5 follows from

L
dv(S) = [ ] cos(6:)db;ab].
i=1

cos(6; —t) 1
and cos(6;) = cos(m/16)

< 2 for 6;, t in the concerned regions.
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4.6 Spectral Gap

Lete > 0. Rather than parametrizing the sets U;’s of Lemma 4.1 with numbers, we label them
with pairs (o, v) with o € {—, +} and v € V, where V, is given as right after Lemma 4.3.
Explicitly, we use Us,y = {5 : X5.0(s) = 1}, where, forv € V¢, 0 € {—, +},

Xow(S) = 1g(s,t)eDi(e,0) 1, (0(S,71),12)€9 (v,6)5

and 1y = L — 1 — € and ¢ are as in Lemma 4.4, while 1, = % — 2 arcsin(e), and ¢y are as
in Lemma 4.5. Finally, let t3(s), 15 be as in Lemma 4.6, and define

=1, h=1u+n, T=1+10+13(000).
Next, introduce the path

@(S.1) ifr < T,
Yoo (S, 1) = § du(@(S, T1), t — T1) ift € [T1, T2],
Uo(po(@(S. T1), Tr = T1), t = Tr) if1 € [T2, T3],

which is defined on Uy, is continuous, and is piecewise differentiable in ¢ with the bound
1o (S, 1)|* < 4n°L, (54)
at every point of differentiability. Moreover, for any L large enough

‘d(ft)#VL

—1\L
o \s(Le )E, (55)

where f;(S) = W4 (S, t). Finally, from the monotonicity of the Hamiltonian along each
piece of the path,
— H[" (We,0(S.1)) = —H}" (S). (56)

Applying Lemma 4.1 with these estimates on the functions (S, ) +— W (S, t/T3), and
choosing € such that QZ(el, €) C A, yields the bound on the relaxation time stated in
Theorem 1.3 in the case N = 3. m]
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